This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380219 #8 Jan 22 2025 06:39:49 %S A380219 0,0,0,0,0,0,0,3,3,3,0,18,0,9,21,75,0,109,0,146,83,43,0,730,224,82, %T A380219 806,722,0,1782,0,4254,733,258,1923,9558,0,435,1875,16395,0,14625,0, %U A380219 9857,33053,1150,0,102070,19391,57326,10157,30702,0,207699,47925,200645 %N A380219 Number of integer partitions of n whose product is a proper multiple of n. %F A380219 a(n) = A057568(n) - A001055(n). %e A380219 The partition y = (4,3,3,2) has product 72, which is a multiple of 12, so y is counted under a(12). %e A380219 The a(8) = 3 through a(14) = 9 partitions: %e A380219 (44) (63) (532) . (66) . (743) %e A380219 (422) (333) (541) (543) (752) %e A380219 (2222) (3321) (5221) (642) (761) %e A380219 (831) (7322) %e A380219 (4332) (7421) %e A380219 (4431) (72221) %e A380219 (5322) (73211) %e A380219 (6222) (74111) %e A380219 (6321) (722111) %e A380219 (6411) %e A380219 (33222) %e A380219 (43221) %e A380219 (43311) %e A380219 (62211) %e A380219 (322221) %e A380219 (332211) %e A380219 (432111) %e A380219 (3222111) %t A380219 Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n]&&UnsameQ[Times@@#,n]&]],{n,30}] %o A380219 (PARI) a(n) = my(nb=0); forpart(p=n, my(vp=vecprod(Vec(p))); if (!(vp%n) && (vp>n), nb++)); nb; \\ _Michel Marcus_, Jan 22 2025 %Y A380219 The non-proper version is A057568, case of equality A001055. %Y A380219 The case of strict partitions is A379733 - 1. %Y A380219 The case of partitions without 1's is A379734 - 1. %Y A380219 These partitions are ranked by A380216. %Y A380219 A000041 counts integer partitions, strict A000009. %Y A380219 A379666 counts partitions by sum and product. %Y A380219 Counting and ranking multisets by comparing sum and product: %Y A380219 - same: A001055, ranks A301987 %Y A380219 - multiple: A057567, ranks A326155 %Y A380219 - divisor: A057568 (strict A379733), ranks A326149, see A379319, A380217. %Y A380219 - greater than: A096276 shifted right, ranks A325038 %Y A380219 - greater or equal: A096276, ranks A325044 %Y A380219 - less than: A114324, ranks A325037, see A318029, A379720 %Y A380219 - less or equal: A319005, ranks A379721, see A025147 %Y A380219 - different: A379736, ranks A379722, see A111133 %Y A380219 Cf. A003963, A028422, A318950, A319000, A319916, A326152, A326156, A379320, A379671, A379735, A380218, A380221. %K A380219 nonn %O A380219 1,8 %A A380219 _Gus Wiseman_, Jan 21 2025