A380220 Least positive integer whose prime indices satisfy (product) - (sum) = n. Position of first appearance of n in A325036.
2, 1, 21, 25, 39, 35, 57, 55, 49, 65, 75, 77, 129, 95, 91, 105, 183, 119, 125, 143, 133, 185, 147, 161, 169, 195, 175, 209, 339, 217, 255, 253, 259, 305, 247, 285, 273, 245, 301, 299, 345, 323, 325, 357, 371, 435, 669, 391, 361, 403, 399, 473, 343, 469, 481
Offset: 0
Examples
The least number whose prime indices satisfy (product) - (sum) = 3 is 25 (prime indices {3,3}), so a(3) = 25.
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pp=Table[Total[prix[n]]-Times@@prix[n],{n,100}]; mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; Table[Position[pp,-i][[1,1]],{i,0,mnrm[-DeleteCases[pp,0|_?Positive]]}]
Comments