This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380227 #10 Jan 24 2025 16:50:41 %S A380227 11,3,11,31,59,463,131,103,599,3253,7649,439,12791,2953,17321,16651, %T A380227 10007,51787,4871,1483,6857,15649,53051,61441,84449,35533,19913,39097, %U A380227 23081,206527,44939,189517,32369,106657,606899,117703,222977,220903,69779,12007,95063,136471,43973 %N A380227 Beginning with 11, least prime such that concatenation of first n terms and its digit reversal both are primes. %p A380227 rev:= proc(n) local L,i; %p A380227 L:= convert(n,base,10); %p A380227 add(L[-i]*10^(i-1),i=1..nops(L)) %p A380227 end proc: %p A380227 tcat:= proc(a,b) %p A380227 a*10^(1+ilog10(b))+b %p A380227 end proc: %p A380227 A:= 11: x:= 11: %p A380227 for i from 1 to 50 do %p A380227 p:= 2: %p A380227 do %p A380227 p:= nextprime(p); %p A380227 y:= tcat(x,p); %p A380227 if isprime(y) and isprime(rev(y)) then %p A380227 A:= A,p; %p A380227 x:= y; %p A380227 break %p A380227 fi; %p A380227 od %p A380227 od: %p A380227 A; # after _Robert Israel_ in A113584 %t A380227 w={11};Do[k=1;q=Monitor[Parallelize[While[True,If[PrimeQ[FromDigits[Join@@IntegerDigits/@Reverse[IntegerDigits[FromDigits[Join@@IntegerDigits/@Append[w,Prime[k]]]]]]]&&PrimeQ[FromDigits[Join@@IntegerDigits/@Append[w,Prime[k]]]],Break[]];k++];Prime[k]],{i,k}];w=Append[w,q],{i,2,50}];w %o A380227 (Python) %o A380227 from itertools import count, islice %o A380227 from gmpy2 import digits, is_prime, mpz, next_prime %o A380227 def agen(): # generator of terms %o A380227 s, r, an = "", "", 11 %o A380227 while True: %o A380227 yield int(an) %o A380227 d = digits(an) %o A380227 s, r, p, sp = s+d, d[::-1]+r, 3, "3" %o A380227 while not is_prime(mpz(s+sp)) or not is_prime(mpz(sp[::-1]+r)): %o A380227 p = next_prime(p) %o A380227 sp = digits(p) %o A380227 an = p %o A380227 print(list(islice(agen(), 40))) # after _Michael S. Branicky_ in A113584 %Y A380227 Cf. A113584 (same for 3), A379761 (same for 7). %Y A380227 Cf. A111382, A111383, A379354, A379355. %K A380227 base,nonn %O A380227 1,1 %A A380227 _J.W.L. (Jan) Eerland_, Jan 17 2025