cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380254 Number of powerful numbers (in A001694) that do not exceed primorial A002110(n).

This page as a plain text file.
%I A380254 #24 Jan 25 2025 02:43:29
%S A380254 1,1,2,7,22,85,330,1433,6450,31555,172023,964560,5891154,37807505,
%T A380254 248226019,1702890101,12401685616,95277158949,744210074157,
%U A380254 6091922351106,51332717836692,438592279944173,3898316990125822,35515462315592564,335052677538616216,3299888425002527366
%N A380254 Number of powerful numbers (in A001694) that do not exceed primorial A002110(n).
%C A380254 In other words, A001694(a(n)) is the largest powerful number less than or equal to A002110(n).
%H A380254 Chai Wah Wu, <a href="/A380254/b380254.txt">Table of n, a(n) for n = 0..26</a>
%e A380254 Let P = A002110 and let s = A001694.
%e A380254 a(0) = 1 since P(0) = 1, and the set s(1) = {1} contains k that do not exceed 1.
%e A380254 a(1) = 1 since P(1) = 2, and the set s(1) = {1} contains k <= 2.
%e A380254 a(2) = 2 since P(2) = 6, and the set s(1..2) = {1, 4} contains k <= 6.
%e A380254 a(3) = 7 since P(3) = 30, and the set s(1..7) = {1, 4, 8, 9, 16, 25, 27} contains k <= 30.
%e A380254 a(4) = 22 since P(4) = 210, and the set s(1..19) = {1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200} contains k <= 210, etc.
%t A380254 f[x_] := Sum[If[SquareFreeQ[ii], Floor[Sqrt[x/ii^3]], 0], {ii, x^(1/3)}];
%t A380254 Table[f[#[[k + 1]]], {k, 0, Length[#] - 1}] &[
%t A380254   FoldList[Times, 1, Prime[Range[12] ] ] ] (* function f after _Robert G. Wilson v_ at A118896 *)
%o A380254 (Python)
%o A380254 from math import isqrt
%o A380254 from sympy import primorial, integer_nthroot, mobius
%o A380254 def A380254(n):
%o A380254     def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
%o A380254     if n == 0: return 1
%o A380254     m = primorial(n)
%o A380254     c, l, j = squarefreepi(integer_nthroot(m, 3)[0]), 0, isqrt(m)
%o A380254     while j>1:
%o A380254         k2 = integer_nthroot(m//j**2,3)[0]+1
%o A380254         w = squarefreepi(k2-1)
%o A380254         c += j*(w-l)
%o A380254         l, j = w, isqrt(m//k2**3)
%o A380254     return c-l # _Chai Wah Wu_, Jan 24 2025
%Y A380254 Cf. A001694, A002110, A062762, A118896, A380337.
%K A380254 nonn,hard
%O A380254 0,3
%A A380254 _Michael De Vlieger_, Jan 19 2025
%E A380254 a(18)-a(25) from _Chai Wah Wu_, Jan 24 2025