This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380254 #24 Jan 25 2025 02:43:29 %S A380254 1,1,2,7,22,85,330,1433,6450,31555,172023,964560,5891154,37807505, %T A380254 248226019,1702890101,12401685616,95277158949,744210074157, %U A380254 6091922351106,51332717836692,438592279944173,3898316990125822,35515462315592564,335052677538616216,3299888425002527366 %N A380254 Number of powerful numbers (in A001694) that do not exceed primorial A002110(n). %C A380254 In other words, A001694(a(n)) is the largest powerful number less than or equal to A002110(n). %H A380254 Chai Wah Wu, <a href="/A380254/b380254.txt">Table of n, a(n) for n = 0..26</a> %e A380254 Let P = A002110 and let s = A001694. %e A380254 a(0) = 1 since P(0) = 1, and the set s(1) = {1} contains k that do not exceed 1. %e A380254 a(1) = 1 since P(1) = 2, and the set s(1) = {1} contains k <= 2. %e A380254 a(2) = 2 since P(2) = 6, and the set s(1..2) = {1, 4} contains k <= 6. %e A380254 a(3) = 7 since P(3) = 30, and the set s(1..7) = {1, 4, 8, 9, 16, 25, 27} contains k <= 30. %e A380254 a(4) = 22 since P(4) = 210, and the set s(1..19) = {1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200} contains k <= 210, etc. %t A380254 f[x_] := Sum[If[SquareFreeQ[ii], Floor[Sqrt[x/ii^3]], 0], {ii, x^(1/3)}]; %t A380254 Table[f[#[[k + 1]]], {k, 0, Length[#] - 1}] &[ %t A380254 FoldList[Times, 1, Prime[Range[12] ] ] ] (* function f after _Robert G. Wilson v_ at A118896 *) %o A380254 (Python) %o A380254 from math import isqrt %o A380254 from sympy import primorial, integer_nthroot, mobius %o A380254 def A380254(n): %o A380254 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A380254 if n == 0: return 1 %o A380254 m = primorial(n) %o A380254 c, l, j = squarefreepi(integer_nthroot(m, 3)[0]), 0, isqrt(m) %o A380254 while j>1: %o A380254 k2 = integer_nthroot(m//j**2,3)[0]+1 %o A380254 w = squarefreepi(k2-1) %o A380254 c += j*(w-l) %o A380254 l, j = w, isqrt(m//k2**3) %o A380254 return c-l # _Chai Wah Wu_, Jan 24 2025 %Y A380254 Cf. A001694, A002110, A062762, A118896, A380337. %K A380254 nonn,hard %O A380254 0,3 %A A380254 _Michael De Vlieger_, Jan 19 2025 %E A380254 a(18)-a(25) from _Chai Wah Wu_, Jan 24 2025