This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380282 #47 Feb 14 2025 23:16:45 %S A380282 1,1,1,1,2,1,2,1,4,5,1,1,2,6,18,7,2,1,13,50,34,10,2,25,144,146,50,2,2, %T A380282 48,402,574,240,18,1,2,97,1168,2142,1120,122,4,1,201,3368,7813,4920, %U A380282 738,32,3,420,9977,28010,20946,4015,225,4,1,904,29856,99610,86400,20221,1561,37,1 %N A380282 Irregular triangle read by rows: T(n,k) is the number of free polyominoes with n cells having k regions between the polyominoes and their bounding boxes, n >= 1, k >= 0. %C A380282 The regions include any holes in the polyominoes. %H A380282 John Mason, <a href="/A380282/b380282.txt">Table of n, a(n) for n = 1..116</a> (first 18 rows (16 rows from _Pontus von Brömssen_)) %H A380282 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %F A380282 T(n,0) = A038548(n). - _Pontus von Brömssen_, Jan 24 2025 %e A380282 Triangle begins: %e A380282 1; %e A380282 1; %e A380282 1, 1; %e A380282 2, 1, 2; %e A380282 1, 4, 5, 1, 1; %e A380282 2, 6, 18, 7, 2; %e A380282 1, 13, 50, 34, 10; %e A380282 2, 25, 144, 146, 50, 2; %e A380282 2, 48, 402, 574, 240, 18, 1; %e A380282 2, 97, 1168, 2142, 1120, 122, 4; %e A380282 1, 201, 3368, 7813, 4920, 738, 32; %e A380282 3, 420, 9977, 28010, 20946, 4015, 225, 4; %e A380282 1, 904, 29856, 99610, 86400, 20221, 1561, 37, 1; %e A380282 ... %e A380282 Illustration for n = 5: %e A380282 The free polyominoes with five cells are also called free pentominoes. %e A380282 For k = 0 there is only one free pentomino having no regions into its bounding box as shown below, so T(5,0) = 1. %e A380282 _ %e A380282 |_| %e A380282 |_| %e A380282 |_| %e A380282 |_| %e A380282 |_| %e A380282 . %e A380282 For k = 1 there are four free pentominoes having only one region into their bounding boxes as shown below, so T(5,1) = 4. %e A380282 _ %e A380282 |_| _ _ _ _ _ %e A380282 |_| |_|_| |_|_| |_| %e A380282 |_|_ |_|_| |_|_ |_|_ _ %e A380282 |_|_| |_| |_|_| |_|_|_| %e A380282 . %e A380282 For k = 2 there are five free pentominoes having two regions into their bounding boxes as shown below, so T(5,2) = 5. %e A380282 _ _ %e A380282 _|_| _|_| _ _ _ _ _ _ %e A380282 |_|_| |_|_| |_|_|_| |_|_ |_|_| %e A380282 |_| |_| |_| |_|_|_ |_|_ %e A380282 |_| |_| |_| |_|_| |_|_| %e A380282 . %e A380282 For k = 3 there is only one free pentomino having three regions into its bounding box as shown below, so T(5,3) = 1. %e A380282 _ _ %e A380282 _|_|_| %e A380282 |_|_| %e A380282 |_| %e A380282 . %e A380282 For k = 4 there is only one free pentomino having four regions into its bounding box as shown below, so T(5,4) = 1. %e A380282 _ %e A380282 _|_|_ %e A380282 |_|_|_| %e A380282 |_| %e A380282 . %e A380282 Therefore the 5th row of the triangle is [1, 4, 5, 1, 1] and the row sums is A000105(5) = 12. %e A380282 . %Y A380282 Row sums give A000105. %Y A380282 Row lengths give A380286. %Y A380282 Cf. A379623, A379627, A379628, A379637, A380283, A380284, A380285. %Y A380282 Cf. A038548. %K A380282 nonn,tabf %O A380282 1,5 %A A380282 _Omar E. Pol_, Jan 18 2025 %E A380282 Terms a(23) and beyond from _Pontus von Brömssen_, Jan 24 2025