This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380283 #36 Mar 11 2025 16:05:59 %S A380283 0,0,0,1,0,5,0,7,14,0,19,52,0,34,173,48,0,74,503,384,0,134,1368,1918, %T A380283 210,0,282,3642,7742,2307,0,524,9552,26843,16267,752,0,1064,24889, %U A380283 87343,84789,11556,0,2017,64200,272599,370799,103336,2833,0,4009,164826,838160,1445347,678863,52437 %N A380283 Irregular triangle read by rows: T(n,k) is the number of regions between the free polyominoes, with n cells and width k, and their bounding boxes, n >= 1, 1 <= k <= ceiling(n/2). %C A380283 The regions include any holes in the polyominoes. %H A380283 John Mason, <a href="/A380283/b380283.txt">Table of n, a(n) for n = 1..90</a> %e A380283 Triangle begins: %e A380283 0; %e A380283 0; %e A380283 0, 1; %e A380283 0, 5; %e A380283 0, 7, 14; %e A380283 0, 19, 52; %e A380283 0, 34, 173, 48; %e A380283 0, 74, 503, 384; %e A380283 0, 134, 1368, 1918, 210; %e A380283 0, 282, 3642, 7742, 2307; %e A380283 0, 524, 9552, 26843, 16267, 752; %e A380283 0, 1064, 24889, 87343, 84789, 11556; %e A380283 0, 2017, 64200, 272599, 370799, 103336, 2833; %e A380283 0, 4009, 164826, 838160, 1445347, 678863, 52437; %e A380283 0, 7663, 420373, 2539843, 5240853, 3659815, 560348, 10396; %e A380283 0, 15031, 1068181, 7631249, 18171771, 17199831, 4373770, 226716; %e A380283 ... %e A380283 Illustration for n = 5: %e A380283 The free polyominoes with five cells are also called free pentominoes. %e A380283 For k = 1 there is only one free pentomino of width 1 as shown below, and there are no regions between the pentomino and its bounding box, so T(5,1) = 0. %e A380283 _ %e A380283 |_| %e A380283 |_| %e A380283 |_| %e A380283 |_| %e A380283 |_| %e A380283 . %e A380283 For k = 2 there are five free pentominoes of width 2 as shown below, and from left to right there are respectively 1, 2, 2, 1, 1 regions between the pentominoes and their bounding boxes, hence the total number of regions is 1 + 2 + 2 + 1 + 1 = 7, so T(5,2) = 7. %e A380283 _ _ _ %e A380283 |_| _|_| _|_| _ _ _ _ %e A380283 |_| |_|_| |_|_| |_|_| |_|_| %e A380283 |_|_ |_| |_| |_|_| |_|_ %e A380283 |_|_| |_| |_| |_| |_|_| %e A380283 . %e A380283 For k = 3 there are six free pentominoes of width 3 as shown below, and from left to right there are respectively 3, 2, 1, 2, 4, 2 regions between the pentominoes and their bounding boxes, hence the total number of regions is 3 + 2 + 1 + 2 + 4 + 2 = 14, so T(5,3) = 14. %e A380283 _ _ _ _ _ _ _ _ _ _ %e A380283 _|_|_| |_|_|_| |_| |_|_ _|_|_ |_|_| %e A380283 |_|_| |_| |_|_ _ |_|_|_ |_|_|_| |_|_ %e A380283 |_| |_| |_|_|_| |_|_| |_| |_|_| %e A380283 . %e A380283 Therefore the 5th row of the triangle is [0, 7, 14]. %e A380283 . %Y A380283 Column 1 gives A000004. %Y A380283 Row lengths give A110654. %Y A380283 Row sums give A380285. %Y A380283 Cf. A000105, A379623, A379625, A379626, A379627, A379628, A379637, A380284. %K A380283 nonn,tabf %O A380283 1,6 %A A380283 _Omar E. Pol_, Jan 18 2025 %E A380283 More terms from _John Mason_, Feb 14 2025