This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380306 #4 Feb 01 2025 23:12:16 %S A380306 1,1,1,1,2,4,3,15,2,6,48,18,11,148,107,6,23,435,528,78,46,1250,2295, %T A380306 661,19,98,3512,9185,4356,346,207,9726,34503,24564,3776,67,451,26587, %U A380306 123612,123825,31289,1543,983,71975,426218,574149,216501,20720,246 %N A380306 Irregular triangle read by rows: T(n,k) is the number of rooted binary normal unlabeled galled trees with n leaves and exactly k galls, 0 <= k <= floor((n-1)/2). %C A380306 For fixed k, the asymptotic growth of T(n,k) with n follows (2^(2*k-1) / ((2*k)! * g^(4*k-1) * sqrt(Pi))) * n^(2*k-3/2) * r^n, where r is the constant 2.4833... represented by A086317 and g is a constant 1.1300... (Theorem 10 of Agranat-Tamir et al., Leibniz International Proceedings in Informatics (LIPIcs) 302 (2024), 27). %H A380306 Lily Agranat-Tamir, Shaili Mathur, and Noah A. Rosenberg, <a href="https://doi.org/10.1007/s11538-024-01270-8">Enumeration of rooted binary unlabeled galled trees</a>, Bull. Math. Biol. 86 (2024), 45. (see Table 3) %H A380306 Lily Agranat-Tamir, Michael Fuchs, Bernhard Gittenberger, and Noah A. Rosenberg, <a href="https://doi.org/10.4230/LIPIcs.AofA.2024.27">Asymptotic enumeration of rooted binary unlabeled galled trees with a fixed number of galls</a>. In C. Mailler, S. Wild, eds. Proceedings of the 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs) 302: 27. Schloss Dagstuhl — Leibniz-Zentrum für Informatik. %F A380306 G.f. satisfies A(x,y) = x + y + (1/2)*A(x,y)^2 + (1/2)*A(x^2,y^2) - y/(1-A(x,y)) + y*A(x,y)/(2*(1-A(x,y))^2) + y*A(x,y)/(2*(1-A(x^2,y^2))) (eq. 56 of Agranat-Tamir et al., Bull. Math. Biol. 86 (2024), 45). %e A380306 Triangle begins: %e A380306 1; %e A380306 1; %e A380306 1, 1; %e A380306 2, 4; %e A380306 3, 15, 2; %e A380306 6, 48, 18; %e A380306 11, 148, 107, 6; %e A380306 23, 435, 528, 78; %e A380306 46, 1250, 2295, 661, 19; %e A380306 98, 3512, 9185, 4356, 346; %e A380306 207, 9726, 34503, 24564, 3776, 67; %e A380306 451, 26587, 123612, 123825, 31289, 1543; %e A380306 983, 71975, 426218, 574149, 216501, 20720, 246; %e A380306 2179, 193200, 1425011, 2493129. 1316450, 206644, 6942; %Y A380306 First column (k=0) is A001190. %Y A380306 Second column (k=1) is A380256. %Y A380306 Row sums give A380211. %K A380306 nonn,tabf %O A380306 1,5 %A A380306 _Noah A Rosenberg_, Jan 19 2025