cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380314 Numerator of sum of reciprocals of all prime divisors of all positive integers <= n.

This page as a plain text file.
%I A380314 #18 Jan 26 2025 14:52:56
%S A380314 0,1,5,4,23,71,527,316,117,283,3183,5737,75736,170777,186793,100904,
%T A380314 1730383,1295397,24782713,13522987,42878411,91488457,2113934201,
%U A380314 1149922463,234446350,494634185,169835681,89698402,2608690087,84946052281,2639797313941,1370038779503,1412581913773
%N A380314 Numerator of sum of reciprocals of all prime divisors of all positive integers <= n.
%C A380314 Prime divisors counted without multiplicity.
%H A380314 Robert Israel, <a href="/A380314/b380314.txt">Table of n, a(n) for n = 1..2346</a>
%F A380314 G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^prime(k) / (prime(k)*(1 - x^prime(k))).
%F A380314 a(n) is the numerator of Sum_{k=1..pi(n)} floor(n/prime(k)) / prime(k).
%e A380314 0, 1/2, 5/6, 4/3, 23/15, 71/30, 527/210, 316/105, 117/35, 283/70, 3183/770, 5737/1155, 75736/15015, ...
%p A380314 N:= 100: # for a(1) .. a(N)
%p A380314 P:= select(isprime,[$1..N]):
%p A380314 f:= proc(n) local k;
%p A380314   numer(add(floor(n/P[k])/P[k],k=1..numtheory:-pi(n)))
%p A380314 end proc:
%p A380314 map(f, [$1..N]); # _Robert Israel_, Jan 26 2025
%t A380314 Table[DivisorSum[n, 1/# &, PrimeQ[#] &], {n, 1, 33}] // Accumulate // Numerator
%t A380314 Table[Sum[Floor[n/Prime[k]]/Prime[k], {k, 1, n}], {n, 1, 33}] // Numerator
%t A380314 nmax = 33; CoefficientList[Series[1/(1 - x) Sum[x^Prime[k]/(Prime[k] (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
%o A380314 (PARI) a(n) = my(vp=primes(primepi(n))); numerator(sum(k=1, #vp, (n\vp[k])/vp[k])); \\ _Michel Marcus_, Jan 26 2025
%Y A380314 Cf. A000720, A007947, A013939, A024451, A024924, A028235, A284648, A379367, A380315 (denominators).
%K A380314 nonn,frac
%O A380314 1,3
%A A380314 _Ilya Gutkovskiy_, Jan 20 2025