cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380315 Denominator of sum of reciprocals of all prime divisors of all positive integers <= n.

This page as a plain text file.
%I A380315 #10 Jan 26 2025 17:43:42
%S A380315 1,2,6,3,15,30,210,105,35,70,770,1155,15015,30030,30030,15015,255255,
%T A380315 170170,3233230,1616615,4849845,9699690,223092870,111546435,22309287,
%U A380315 44618574,14872858,7436429,215656441,6469693230,200560490130,100280245065,100280245065
%N A380315 Denominator of sum of reciprocals of all prime divisors of all positive integers <= n.
%C A380315 Prime divisors counted without multiplicity.
%C A380315 Differs from A379370 first at n=15.
%F A380315 G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^prime(k) / (prime(k)*(1 - x^prime(k))).
%F A380315 a(n) is the denominator of Sum_{k=1..pi(n)} floor(n/prime(k)) / prime(k).
%e A380315 0, 1/2, 5/6, 4/3, 23/15, 71/30, 527/210, 316/105, 117/35, 283/70, 3183/770, 5737/1155, 75736/15015, ...
%t A380315 Table[DivisorSum[n, 1/# &, PrimeQ[#] &], {n, 1, 33}] // Accumulate // Denominator
%t A380315 Table[Sum[Floor[n/Prime[k]]/Prime[k], {k, 1, n}], {n, 1, 33}] // Denominator
%t A380315 nmax = 33; CoefficientList[Series[1/(1 - x) Sum[x^Prime[k]/(Prime[k] (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
%o A380315 (PARI) a(n) = my(vp=primes(primepi(n))); denominator(sum(k=1, #vp, (n\vp[k])/vp[k])); \\ _Michel Marcus_, Jan 26 2025
%Y A380315 Cf. A000720, A007947, A013939, A024924, A028235, A284650, A379370, A379368, A380314 (numerators).
%K A380315 nonn,frac
%O A380315 1,2
%A A380315 _Ilya Gutkovskiy_, Jan 20 2025