cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380316 Sphenic numbers that are the sum of two successive sphenics.

This page as a plain text file.
%I A380316 #13 Jan 21 2025 11:49:13
%S A380316 385,555,759,897,935,957,1185,1245,1265,1335,2015,2037,2185,2211,2261,
%T A380316 2379,2607,2821,2877,2937,3059,3298,3363,3434,3485,3507,3538,3815,
%U A380316 3913,4029,4255,4378,4433,4526,4615,4738,4795,4947,5181,5205,5395,5405,5523,5681,5829,5883,6226
%N A380316 Sphenic numbers that are the sum of two successive sphenics.
%C A380316 The sum of two consecutive sphenic numbers varies as 4n log n/(log log n)^2, so this sequence is not smaller than that. - _Charles R Greathouse IV_, Jan 21 2025
%H A380316 Charles R Greathouse IV, <a href="/A380316/b380316.txt">Table of n, a(n) for n = 1..10000</a>
%e A380316 385 = 5*7*11 is a member because 385 = 190+195, sum of 18-th and 19-th sphenic number.
%e A380316 555 = 3*5*37 is a member because 555 = 273+292, sum of 28-th and 29-th sphenic number.
%p A380316 issphenic:= proc(n) local F; F:= ifactors(n)[2]; F[..,2] = [1,1,1] end proc:
%p A380316 S:= select(issphenic, [$1..10000]):
%p A380316 select(issphenic, S[1..-2]+S[2..-1]);
%p A380316 # _Robert Israel_, Jan 20 2025
%t A380316 sphenicQ[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1}; Select[MovingMap[Total, Select[Range[3200], sphenicQ], 1], sphenicQ] (* _Amiram Eldar_, Jan 21 2025 *)
%o A380316 (PARI) issphenic(n) = my(f=factor(n)); (bigomega(f)==3) && (omega(f)==3);
%o A380316 lista(nn) = my(v=select(issphenic, [1..nn])); select(issphenic, vector(#v-1, k, v[k]+v[k+1])); \\ _Michel Marcus_, Jan 20 2025
%o A380316 (PARI) sphen(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\=1,3), forprime(q=p+1, sqrtint(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); Set(v)
%o A380316 has(n,f=factor(n))=f[,2]==[1,1,1]~
%o A380316 list(lim)=my(v=List(),u=sphen(lim\2)); for(i=2,#u, if(has(u[i]+u[i-1]), listput(v,u[i]+u[i-1]))); forfactored(k=lim\2+1,lim\1-u[#u], if(has(0,k[2]), if(has(k[1]+u[#u]), listput(v,k[1]+u[#u])); break)); Vec(v) \\ _Charles R Greathouse IV_, Jan 21 2025
%Y A380316 Cf. A001043, A007304, A092192.
%K A380316 nonn
%O A380316 1,1
%A A380316 _Massimo Kofler_, Jan 20 2025