A380328 2-dense squarefree numbers: Squarefree numbers whose divisors increase by factors of at most 2.
1, 2, 6, 30, 42, 66, 210, 330, 390, 462, 510, 546, 570, 690, 714, 798, 858, 870, 930, 966, 1110, 1122, 1218, 1230, 1254, 1290, 1302, 1410, 1518, 1554, 1590, 1722, 1770, 1806, 1914, 1974, 2046, 2226, 2310, 2442, 2478, 2562, 2706, 2730, 2814, 2838, 2982, 3066, 3102, 3318, 3486, 3498
Offset: 1
Keywords
Examples
a(5) = 42 and its prime factorization is 2*3*7 and squarefree. Also the proper divisors are 1, 2, 3, 6, 7, 21, 42 they are 2-dense and therefore 42 is practical as well as being primitive practical.
Links
- Frank M Jackson, Table of n, a(n) for n = 1..10000
- Eric Saias, Entiers à diviseurs denses 1, Journal of Number Theory, Vol. 62, No. 1 (1997), pp. 163-191.
- Andreas Weingartner, On the constant factor in several related asymptotic estimates, Math. Comp., Vol. 88, No. 318 (2019), pp. 1883-1902; arXiv preprint, arXiv:1705.06349 [math.NT], 2017-2018.
Programs
-
Maple
filter:= proc(n) local D,i; if not numtheory:-issqrfree(n) then return false fi; D:= sort(convert(numtheory:-divisors(n),list)); andmap(i -> D[i+1]<=2*D[i],[$1..nops(D)-1]) end proc: select(filter, [1,seq(i,i=2..5000,4)]); # Robert Israel, Jan 23 2025
-
Mathematica
Dens2DivQ[n_] := Module[{lst=Divisors[n], m, ok}, If[n==1, Return[True]]; Do[ok=False; If[lst[[m+1]]/lst[[m]]>2, Break[]]; ok=True, {m, 1, Length[lst]-1}]; ok]; Select[Range[10000], SquareFreeQ[#]&&Dens2DivQ[#]&]
Formula
a(n) = C*n*log(n*log(n)) + O(n), where C = 14.56... (see comments). - Andreas Weingartner, Jan 23 2025
Comments