cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380332 a(n) = number of primes between n^2 and n^4.

This page as a plain text file.
%I A380332 #17 Jan 28 2025 00:57:32
%S A380332 0,0,4,18,48,105,199,342,546,825,1204,1685,2300,3068,4008,5143,6488,
%T A380332 8091,9956,12115,14605,17446,20676,24322,28441,33004,38114,43805,
%U A380332 50066,56951,64529,72830,81853,91751,102397,114004,126516,140016,154559,170186,186883,204880,224009,244527,266283,289506,314148,340292,368114,397407
%N A380332 a(n) = number of primes between n^2 and n^4.
%C A380332 p(2) = 4 because there are 4 primes between 4 and 16.
%F A380332 a(n) = PrimePi(n^4) - PrimePi(n^2).
%t A380332 Table[PrimePi[n^4] - PrimePi[n^2], {n, 0, 60}]
%o A380332 (PARI) a(n) = primepi(n^4) - primepi(n^2); \\ _Michel Marcus_, Jan 27 2025
%o A380332 (Python)
%o A380332 from sympy import primepi
%o A380332 def A380332(n): return -primepi(m:=n**2)+primepi(m**2) # _Chai Wah Wu_, Jan 27 2025
%Y A380332 Cf. A000040, A000720, A038107, A079648, A380331.
%K A380332 nonn
%O A380332 0,3
%A A380332 _Clark Kimberling_, Jan 26 2025