cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380336 Triangular array read by rows. T(n,k) is the number of ways to choose a size k subset S of [n] and form a labeled acyclic digraph on S. Then form another labeled acyclic digraph on [n]-S. For each pair u in S and v in [n]-S add the directed edge u->v or not, n>=0, 0<=k<=n.

This page as a plain text file.
%I A380336 #16 Jan 23 2025 00:22:52
%S A380336 1,1,1,3,4,3,25,36,36,25,543,800,864,800,543,29281,43440,48000,48000,
%T A380336 43440,29281,3781503,5621952,6255360,6400000,6255360,5621952,3781503,
%U A380336 1138779265,1694113344,1888975872,1946112000,1946112000,1888975872,1694113344,1138779265
%N A380336 Triangular array read by rows.  T(n,k) is the number of ways to choose a size k subset S of [n] and form a labeled acyclic digraph on S.  Then form another labeled acyclic digraph on [n]-S. For each pair u in S and v in [n]-S add the directed edge u->v or not, n>=0, 0<=k<=n.
%H A380336 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%H A380336 R. P. Stanley, <a href="https://doi.org/10.1016/j.disc.2006.03.010">Acyclic orientation of graphs</a>, Discrete Math. 5 (1973), 171-178.
%F A380336 Sum_{n>=0} T(n,k)*y^k*x^n/(2^binomial(n,2)*n!) = 1/E(-y*x)*1/E(-x) where E(x) = Sum_{n>=0} x^n/(2^binomial(n,2)*n!).
%F A380336 T(n,k) = binomial(n,k)*A003024(k)*A003024(n-k)*2^(k*(n-k)). - _Alois P. Heinz_, Jan 22 2025
%e A380336 Triangle T(n,k) begins:
%e A380336      1;
%e A380336      1,     1;
%e A380336      3,     4,     3;
%e A380336     25,    36,    36,    25;
%e A380336    543,   800,   864,   800,   543;
%e A380336  29281, 43440, 48000, 48000, 43440, 29281;
%e A380336  ...
%t A380336 nn = 6; B[n_] := n! 2^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/e[-u z]*1/e[-z], {z, 0, nn}], {z, u}]] // Grid
%Y A380336 Cf. A339934 (row sums), A003024 (column k=0 and main diagonal).
%K A380336 nonn,tabl
%O A380336 0,4
%A A380336 _Geoffrey Critzer_, Jan 21 2025