This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380336 #16 Jan 23 2025 00:22:52 %S A380336 1,1,1,3,4,3,25,36,36,25,543,800,864,800,543,29281,43440,48000,48000, %T A380336 43440,29281,3781503,5621952,6255360,6400000,6255360,5621952,3781503, %U A380336 1138779265,1694113344,1888975872,1946112000,1946112000,1888975872,1694113344,1138779265 %N A380336 Triangular array read by rows. T(n,k) is the number of ways to choose a size k subset S of [n] and form a labeled acyclic digraph on S. Then form another labeled acyclic digraph on [n]-S. For each pair u in S and v in [n]-S add the directed edge u->v or not, n>=0, 0<=k<=n. %H A380336 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019. %H A380336 R. P. Stanley, <a href="https://doi.org/10.1016/j.disc.2006.03.010">Acyclic orientation of graphs</a>, Discrete Math. 5 (1973), 171-178. %F A380336 Sum_{n>=0} T(n,k)*y^k*x^n/(2^binomial(n,2)*n!) = 1/E(-y*x)*1/E(-x) where E(x) = Sum_{n>=0} x^n/(2^binomial(n,2)*n!). %F A380336 T(n,k) = binomial(n,k)*A003024(k)*A003024(n-k)*2^(k*(n-k)). - _Alois P. Heinz_, Jan 22 2025 %e A380336 Triangle T(n,k) begins: %e A380336 1; %e A380336 1, 1; %e A380336 3, 4, 3; %e A380336 25, 36, 36, 25; %e A380336 543, 800, 864, 800, 543; %e A380336 29281, 43440, 48000, 48000, 43440, 29281; %e A380336 ... %t A380336 nn = 6; B[n_] := n! 2^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/e[-u z]*1/e[-z], {z, 0, nn}], {z, u}]] // Grid %Y A380336 Cf. A339934 (row sums), A003024 (column k=0 and main diagonal). %K A380336 nonn,tabl %O A380336 0,4 %A A380336 _Geoffrey Critzer_, Jan 21 2025