This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380337 #22 Jan 23 2025 15:34:29 %S A380337 1,1,2,7,19,63,208,802,3344,15576,82368,453834,2743903,17510668, %T A380337 114616907,785002449,5711892439,43861741799,342522899289, %U A380337 2803468693325,23621594605383,201819398349092,1793794228847381,16342173067958793,154171432351500060,1518411003599957803 %N A380337 Number of perfect powers (in A001597) that do not exceed primorial A002110(n). %C A380337 In other words, A001597(a(n)) is the largest perfect power less than or equal to A002110(n). %H A380337 Michael De Vlieger, <a href="/A380337/b380337.txt">Table of n, a(n) for n = 0..632</a> %e A380337 Let P = A002110 and let s = A001597. %e A380337 a(0) = 1 since P(0) = 1, and the set s(1) = {1} contains k that do not exceed 1. %e A380337 a(1) = 1 since P(1) = 2, and the set s(1) = {1} contains k <= 2. %e A380337 a(2) = 2 since P(2) = 6, and the set s(1..2) = {1, 4} contains k <= 6. %e A380337 a(3) = 7 since P(3) = 30, and the set s(1..7) = {1, 4, 8, 9, 16, 25, 27} contains k <= 30. %e A380337 a(4) = 19 since P(4) = 210, and the set s(1..19) = {1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196} contains k <= 210, etc. %t A380337 Map[1 - Sum[MoebiusMu[k]*Floor[#^(1/k) - 1], {k, 2, Floor[Log2[#]]}] &, FoldList[Times, 1, Prime[Range[30]]] ] %o A380337 (Python) %o A380337 from sympy import primorial, mobius, integer_nthroot %o A380337 def A380337(n): %o A380337 if n == 0: return 1 %o A380337 p = primorial(n) %o A380337 return int(1-sum(mobius(k)*(integer_nthroot(p,k)[0]-1) for k in range(2,p.bit_length()))) # _Chai Wah Wu_, Jan 23 2025 %Y A380337 Cf. A001597, A002110, A070228, A070428, A380254. %K A380337 nonn %O A380337 0,3 %A A380337 _Michael De Vlieger_, Jan 21 2025