cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380337 Number of perfect powers (in A001597) that do not exceed primorial A002110(n).

This page as a plain text file.
%I A380337 #22 Jan 23 2025 15:34:29
%S A380337 1,1,2,7,19,63,208,802,3344,15576,82368,453834,2743903,17510668,
%T A380337 114616907,785002449,5711892439,43861741799,342522899289,
%U A380337 2803468693325,23621594605383,201819398349092,1793794228847381,16342173067958793,154171432351500060,1518411003599957803
%N A380337 Number of perfect powers (in A001597) that do not exceed primorial A002110(n).
%C A380337 In other words, A001597(a(n)) is the largest perfect power less than or equal to A002110(n).
%H A380337 Michael De Vlieger, <a href="/A380337/b380337.txt">Table of n, a(n) for n = 0..632</a>
%e A380337 Let P = A002110 and let s = A001597.
%e A380337 a(0) = 1 since P(0) = 1, and the set s(1) = {1} contains k that do not exceed 1.
%e A380337 a(1) = 1 since P(1) = 2, and the set s(1) = {1} contains k <= 2.
%e A380337 a(2) = 2 since P(2) = 6, and the set s(1..2) = {1, 4} contains k <= 6.
%e A380337 a(3) = 7 since P(3) = 30, and the set s(1..7) = {1, 4, 8, 9, 16, 25, 27} contains k <= 30.
%e A380337 a(4) = 19 since P(4) = 210, and the set s(1..19) = {1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196} contains k <= 210, etc.
%t A380337 Map[1 - Sum[MoebiusMu[k]*Floor[#^(1/k) - 1], {k, 2, Floor[Log2[#]]}] &, FoldList[Times, 1, Prime[Range[30]]] ]
%o A380337 (Python)
%o A380337 from sympy import primorial, mobius, integer_nthroot
%o A380337 def A380337(n):
%o A380337     if n == 0: return 1
%o A380337     p = primorial(n)
%o A380337     return int(1-sum(mobius(k)*(integer_nthroot(p,k)[0]-1) for k in range(2,p.bit_length()))) # _Chai Wah Wu_, Jan 23 2025
%Y A380337 Cf. A001597, A002110, A070228, A070428, A380254.
%K A380337 nonn
%O A380337 0,3
%A A380337 _Michael De Vlieger_, Jan 21 2025