This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380343 #7 Jan 23 2025 00:19:02 %S A380343 1,0,0,0,0,1,0,1,0,1,0,3,0,3,5,5,0,8,0,15,11,8,0,42,8,12,26,49,0,100, %T A380343 0,90,56,27,105,246,0,41,108,414,0,450,0,332,651,81,0,1341,210,693, %U A380343 366,754,0,1869,1044,2579,634,206,0,5695,0,278,4850,5927,2802 %N A380343 Number of strict integer partitions of n whose product of parts is a multiple of n + 1. %e A380343 The a(5) = 1 through a(17) = 8 partitions (A=10, C=12): %e A380343 32 . 421 . 54 . 83 . 76 95 843 . 98 %e A380343 632 742 653 852 863 %e A380343 641 7321 A31 861 962 %e A380343 5432 6432 C32 %e A380343 6521 8421 7631 %e A380343 9431 %e A380343 9521 %e A380343 65321 %t A380343 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Times@@#,n+1]&]],{n,0,30}] %Y A380343 The non-strict version is A379320, ranked by A380217 = A379319/2. %Y A380343 For n instead of n+1 we have A379733, non-strict A057568. %Y A380343 The case of equality for non-strict partitions is A380218. %Y A380343 A000041 counts integer partitions, strict A000009. %Y A380343 A379666 counts partitions by sum and product. %Y A380343 A380219 counts partitions of n whose product is a proper multiple of n, ranks A380216. %Y A380343 Counting and ranking multisets by comparing sum and product: %Y A380343 - same: A001055, ranks A301987 %Y A380343 - multiple: A057567, ranks A326155 %Y A380343 - divisor: A057568, ranks A326149 %Y A380343 - greater than: A096276 shifted right, ranks A325038 %Y A380343 - greater or equal: A096276, ranks A325044 %Y A380343 - less than: A114324, ranks A325037, see A318029, A379720 %Y A380343 - less or equal: A319005, ranks A379721, see A025147 %Y A380343 - different: A379736, ranks A379722, see A111133 %Y A380343 Cf. A003963, A069016, A319000, A319916, A325042, A326152, A326156, A379671, A379734. %K A380343 nonn %O A380343 0,12 %A A380343 _Gus Wiseman_, Jan 22 2025