cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380344 Product of prime indices minus sum of prime factors of n.

This page as a plain text file.
%I A380344 #9 Jan 26 2025 09:12:56
%S A380344 1,-1,-1,-3,-2,-3,-3,-5,-2,-4,-6,-5,-7,-5,-2,-7,-10,-4,-11,-6,-2,-8,
%T A380344 -14,-7,-1,-9,-1,-7,-19,-4,-20,-9,-4,-12,0,-6,-25,-13,-4,-8,-28,-4,
%U A380344 -29,-10,1,-16,-32,-9,2,-3,-6,-11,-37,-3,-1,-9,-6,-21,-42,-6,-43
%N A380344 Product of prime indices minus sum of prime factors of n.
%C A380344 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963.
%F A380344 a(n) = A003963(n) - A001414(n).
%e A380344 72 has prime factors {2,2,2,3,3} and prime indices {1,1,1,2,2}, so a(72) = 4 - 12 = -8.
%t A380344 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A380344 Table[Times@@prix[n]-Plus@@Prime/@prix[n],{n,100}]
%Y A380344 Positions of 0 are A331384.
%Y A380344 For plus instead of minus we have A380409.
%Y A380344 Positions of positives are A380410.
%Y A380344 Triangles:
%Y A380344 - A027746 = prime factors
%Y A380344 - A112798 = prime indices
%Y A380344 Statistics:
%Y A380344 - A000027 = product of prime factors = row products of A027746
%Y A380344 - A001414 = sum of prime factors = row sums of A027746
%Y A380344 - A003963 = product of prime indices = row products of A112798
%Y A380344 - A056239 = sum of prime indices = row sums of A112798
%Y A380344 Combinations:
%Y A380344 - A075254 = product of factors + sum of factors = A000027 + A001414
%Y A380344 - A075255 = product of factors - sum of factors = A000027 - A001414
%Y A380344 - A178503 = product of factors - sum of indices = A000027 - A056239
%Y A380344 - A325036 = product of indices - sum of indices = A003963 - A056239
%Y A380344 - A379681 = product of indices + sum of indices = A003963 + A056239
%Y A380344 - A380344 = product of indices - sum of factors = A003963 - A001414
%Y A380344 - A380345 = product of factors + sum of indices = A000027 + A056239
%Y A380344 - A380409 = product of indices + sum of factors = A003963 + A001414
%Y A380344 A000040 lists the primes, differences A001223.
%Y A380344 A001222 counts prime factors with multiplicity.
%Y A380344 A055396 gives least prime index, greatest A061395.
%Y A380344 Cf. A000720, A175508, A319000, A325032, A325033, A325034, A325035, A325040, A379682, A380220.
%K A380344 sign
%O A380344 1,4
%A A380344 _Gus Wiseman_, Jan 24 2025