This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380344 #9 Jan 26 2025 09:12:56 %S A380344 1,-1,-1,-3,-2,-3,-3,-5,-2,-4,-6,-5,-7,-5,-2,-7,-10,-4,-11,-6,-2,-8, %T A380344 -14,-7,-1,-9,-1,-7,-19,-4,-20,-9,-4,-12,0,-6,-25,-13,-4,-8,-28,-4, %U A380344 -29,-10,1,-16,-32,-9,2,-3,-6,-11,-37,-3,-1,-9,-6,-21,-42,-6,-43 %N A380344 Product of prime indices minus sum of prime factors of n. %C A380344 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963. %F A380344 a(n) = A003963(n) - A001414(n). %e A380344 72 has prime factors {2,2,2,3,3} and prime indices {1,1,1,2,2}, so a(72) = 4 - 12 = -8. %t A380344 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A380344 Table[Times@@prix[n]-Plus@@Prime/@prix[n],{n,100}] %Y A380344 Positions of 0 are A331384. %Y A380344 For plus instead of minus we have A380409. %Y A380344 Positions of positives are A380410. %Y A380344 Triangles: %Y A380344 - A027746 = prime factors %Y A380344 - A112798 = prime indices %Y A380344 Statistics: %Y A380344 - A000027 = product of prime factors = row products of A027746 %Y A380344 - A001414 = sum of prime factors = row sums of A027746 %Y A380344 - A003963 = product of prime indices = row products of A112798 %Y A380344 - A056239 = sum of prime indices = row sums of A112798 %Y A380344 Combinations: %Y A380344 - A075254 = product of factors + sum of factors = A000027 + A001414 %Y A380344 - A075255 = product of factors - sum of factors = A000027 - A001414 %Y A380344 - A178503 = product of factors - sum of indices = A000027 - A056239 %Y A380344 - A325036 = product of indices - sum of indices = A003963 - A056239 %Y A380344 - A379681 = product of indices + sum of indices = A003963 + A056239 %Y A380344 - A380344 = product of indices - sum of factors = A003963 - A001414 %Y A380344 - A380345 = product of factors + sum of indices = A000027 + A056239 %Y A380344 - A380409 = product of indices + sum of factors = A003963 + A001414 %Y A380344 A000040 lists the primes, differences A001223. %Y A380344 A001222 counts prime factors with multiplicity. %Y A380344 A055396 gives least prime index, greatest A061395. %Y A380344 Cf. A000720, A175508, A319000, A325032, A325033, A325034, A325035, A325040, A379682, A380220. %K A380344 sign %O A380344 1,4 %A A380344 _Gus Wiseman_, Jan 24 2025