cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380358 Numbers whose binary expansion ends with 11 and does not contain adjacent zeros.

This page as a plain text file.
%I A380358 #26 Feb 12 2025 18:44:37
%S A380358 3,7,11,15,23,27,31,43,47,55,59,63,87,91,95,107,111,119,123,127,171,
%T A380358 175,183,187,191,215,219,223,235,239,247,251,255,343,347,351,363,367,
%U A380358 375,379,383,427,431,439,443,447,471,475,479,491,495,503,507,511,683
%N A380358 Numbers whose binary expansion ends with 11 and does not contain adjacent zeros.
%C A380358 The numbers in this sequence appear in the conversion of conventional binary numbers to the canonical signed-digit representation.
%D A380358 J. L. Smith and A. Weinberger, "Shortcut Multiplication for Binary Digital Computers", in Methods for High-Speed Addition and Multiplication, National Bureau of Standards Circular 591, Sec. 1, February, 1958, page 21.
%H A380358 R. J. Cintra, <a href="https://arxiv.org/abs/2501.10908">A note on the conversion of nonnegative integers to the canonical signed-digit representation</a>, arXiv:2501.10908 [eess.SP], 2025.
%F A380358 a(n) = 2 * A247648(n) + 1.
%F A380358 From _Hugo Pfoertner_, Feb 07 2025: (Start)
%F A380358 a(n) = 4*A052499(n) - 1.
%F A380358 a(n) = 4*(A365808(n+1) + 1)/3 - 1.
%F A380358 a(n) = 2*(A365809(n) + 1)/3 - 1. (End)
%e A380358 183 is in the sequence because its binary expansion is 10110111.
%t A380358 Select[4*Range[0, 170] + 3, SequencePosition[IntegerDigits[#, 2], {0, 0}] == {} &] (* _Amiram Eldar_, Feb 05 2025 *)
%o A380358 (Python)
%o A380358 from itertools import count, islice
%o A380358 def A380358_gen(startvalue=1): # generator of terms >= startvalue
%o A380358     return filter(lambda n:n&3==3 and not '00' in bin(n),count(max(startvalue,1)))
%o A380358 A380358_list = list(islice(A380358_gen(),20)) # _Chai Wah Wu_, Feb 12 2025
%Y A380358 Cf. A003754, A052499, A247648, A365808, A365809.
%K A380358 nonn,base
%O A380358 1,1
%A A380358 _R. J. Cintra_, Jan 22 2025