This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380361 #12 Jan 26 2025 17:42:42 %S A380361 1,0,1,0,1,1,0,0,1,1,0,0,1,2,1,0,0,0,4,2,1,0,0,0,4,8,3,1,0,0,0,0,12, %T A380361 16,3,1,0,0,0,0,6,40,25,4,1,0,0,0,0,0,43,93,40,4,1,0,0,0,0,0,19,165, %U A380361 197,56,5,1,0,0,0,0,0,0,143,505,364,80,5,1 %N A380361 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of Halin graphs on n unlabeled nodes with circuit rank k up to orientation-preserving homeomorphisms, 3 <= k <= n-1. %C A380361 The circuit rank is equal to the number of leaves on the tree before it is extended into a Halin graph by joining up the leaves. %C A380361 The main diagonal of the graph corresponds with the wheel graphs which have the greatest circuit rank of all Halin graphs. %C A380361 T(n,k) is also the number of nonequivalent dissections of a k-gon into n-k polygons by nonintersecting diagonals up to rotation. %H A380361 Andrew Howroyd, <a href="/A380361/b380361.txt">Table of n, a(n) for n = 4..1278</a> (first 50 rows) %H A380361 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HalinGraph.html">Halin Graph</a>. %H A380361 Wikipedia, <a href="https://en.wikipedia.org/wiki/Circuit_rank">Circuit rank</a>. %H A380361 Wikipedia, <a href="https://en.wikipedia.org/wiki/Halin_graph">Halin graph</a>. %F A380361 T(n,k) = A295633(k, n-k). %e A380361 Triangle begins: %e A380361 n\k| 3 4 5 6 7 8 9 10 11 12 13 %e A380361 -----+----------------------------------------- %e A380361 4 | 1; %e A380361 5 | 0, 1; %e A380361 6 | 0, 1, 1; %e A380361 7 | 0, 0, 1, 1; %e A380361 8 | 0, 0, 1, 2, 1; %e A380361 9 | 0, 0, 0, 4, 2, 1; %e A380361 10 | 0, 0, 0, 4, 8, 3, 1; %e A380361 11 | 0, 0, 0, 0, 12, 16, 3, 1; %e A380361 12 | 0, 0, 0, 0, 6, 40, 25, 4, 1; %e A380361 13 | 0, 0, 0, 0, 0, 43, 93, 40, 4, 1; %e A380361 14 | 0, 0, 0, 0, 0, 19, 165, 197, 56, 5, 1; %e A380361 ... %o A380361 (PARI) \\ See PARI Link in A380362 for program code. %o A380361 { my(T=A380361rows(12)); for(i=1, #T, print(T[i])) } %Y A380361 Row sums are A380360. %Y A380361 Column sums are A003455. %Y A380361 Main diagonal is A000012. %Y A380361 Central coefficients are A001683. %Y A380361 Cf. A295633, A380362. %K A380361 nonn,tabl %O A380361 4,14 %A A380361 _Andrew Howroyd_, Jan 25 2025