This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380362 #10 Jan 26 2025 17:42:37 %S A380362 1,0,1,0,1,1,0,0,1,1,0,0,1,2,1,0,0,0,3,2,1,0,0,0,3,6,3,1,0,0,0,0,7,11, %T A380362 3,1,0,0,0,0,4,24,17,4,1,0,0,0,0,0,24,51,26,4,1,0,0,0,0,0,12,89,109, %U A380362 36,5,1,0,0,0,0,0,0,74,265,194,50,5,1,0,0,0,0,0,0,27,371,660,345,65,6,1 %N A380362 Triangle read by rows: T(n,k) is the number of Halin graphs on n unlabeled nodes with circuit rank k, 3 <= k <= n-1. %C A380362 The circuit rank is equal to the number of leaves on the tree before it is extended into a Halin graph by joining up the leaves. %C A380362 The main diagonal of the graph corresponds with the wheel graphs which have the greatest circuit rank of all Halin graphs. %C A380362 T(n,k) is also the number of nonequivalent dissections of a k-gon into n-k polygons by nonintersecting diagonals up to rotations and reflections. %H A380362 Andrew Howroyd, <a href="/A380362/b380362.txt">Table of n, a(n) for n = 4..1278</a> (first 50 rows) %H A380362 Andrew Howroyd, <a href="/A380362/a380362.txt">Formulas and PARI Program</a>, Jan 2025. %H A380362 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HalinGraph.html">Halin Graph</a>. %H A380362 Wikipedia, <a href="https://en.wikipedia.org/wiki/Circuit_rank">Circuit rank</a>. %H A380362 Wikipedia, <a href="https://en.wikipedia.org/wiki/Halin_graph">Halin graph</a>. %F A380362 T(n,k) = A295634(k, n-k). %e A380362 Triangle begins: %e A380362 n\k| 3 4 5 6 7 8 9 10 11 12 13 %e A380362 -----+---------------------------------------- %e A380362 4 | 1; %e A380362 5 | 0, 1; %e A380362 6 | 0, 1, 1; %e A380362 7 | 0, 0, 1, 1; %e A380362 8 | 0, 0, 1, 2, 1; %e A380362 9 | 0, 0, 0, 3, 2, 1; %e A380362 10 | 0, 0, 0, 3, 6, 3, 1; %e A380362 11 | 0, 0, 0, 0, 7, 11, 3, 1; %e A380362 12 | 0, 0, 0, 0, 4, 24, 17, 4, 1; %e A380362 13 | 0, 0, 0, 0, 0, 24, 51, 26, 4, 1; %e A380362 14 | 0, 0, 0, 0, 0, 12, 89, 109, 36, 5, 1; %e A380362 ... %o A380362 (PARI) \\ See PARI Link for program code. %o A380362 { my(T=A380361rows(12)); for(i=1, #T, print(T[i])) } %Y A380362 Row sums are A346779. %Y A380362 Column sums are A001004. %Y A380362 Main diagonal is A000012. %Y A380362 Central coefficients are A000207. %Y A380362 Cf. A295634, A380361. %K A380362 nonn,tabl %O A380362 4,14 %A A380362 _Andrew Howroyd_, Jan 25 2025