This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380363 #16 Sep 05 2025 09:27:55 %S A380363 1,1,1,1,1,1,1,2,1,4,1,1,7,3,1,11,10,1,1,17,24,5,1,25,56,22,1,1,36, %T A380363 114,74,6,1,50,224,219,37,1,1,70,411,576,158,8,1,94,733,1394,591,58,1, %U A380363 1,127,1252,3150,1896,304,9,1,168,2091,6733,5537,1342,82,1 %N A380363 Triangle read by rows: T(n,k) is the number of linear trees with n vertices and k vertices of degree >= 3, 0 <= k <= max(0, floor(n/2)-1). %C A380363 A linear tree is a tree with all vertices of degree > 2 belonging to a single path. These are equinumerous with lobster graphs. All trees having at most 3 vertices of degree > 2 are linear trees. %H A380363 Andrew Howroyd, <a href="/A380363/b380363.txt">Table of n, a(n) for n = 0..2501</a> (rows 0..100) %H A380363 Tanay Wakhare, Eric Wityk, and Charles R. Johnson, <a href="https://doi.org/10.1016/j.disc.2020.112008">The proportion of trees that are linear</a>, Discrete Mathematics 343.10 (2020): 112008. Also <a href="https://doi.org/10.1016/j.disc.2020.112284">Corrigendum</a> and preprint <a href="https://arxiv.org/abs/1901.08502">arXiv:1901.08502</a>. See Table 1. %H A380363 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LobsterGraph.html">Lobster Graph</a>. %e A380363 Triangle begins: %e A380363 1; %e A380363 1; %e A380363 1; %e A380363 1; %e A380363 1, 1; %e A380363 1, 2; %e A380363 1, 4, 1; %e A380363 1, 7, 3; %e A380363 1, 11, 10, 1; %e A380363 1, 17, 24, 5; %e A380363 1, 25, 56, 22, 1; %e A380363 1, 36, 114, 74, 6; %e A380363 1, 50, 224, 219, 37, 1; %e A380363 1, 70, 411, 576, 158, 8; %e A380363 1, 94, 733, 1394, 591, 58, 1; %e A380363 1, 127, 1252, 3150, 1896, 304, 9; %e A380363 ... %o A380363 (PARI) %o A380363 G(n,y)={my(p=1/eta(x + O(x^n)), p2=1/eta(x^2 + O(x^n)), %o A380363 g1=(p - 1/(1-x))^2/((1 - x)*(1 - x*y*(p-1)/(1-x))), %o A380363 g2=(p2 - 1/(1-x^2))*(1 + x + x*y*(p-1))/((1 - x^2)*(1 - x^2*y^2*(p2-1)/(1-x^2))) ); %o A380363 x^2*y^2*(g1 + g2)/2 + x*y*(p - 1/((1 + x)*(1 - x)^2)) + 1/(1-x) %o A380363 } %o A380363 T(n)=[Vecrev(p) | p<-Vec(G(n,y))] %o A380363 {my(A=T(15)); for(i=1, #A, print(A[i]))} %Y A380363 Columns 0..4 are A000012, A004250(n-1), A338706, A338707, A338708. %Y A380363 Row sums are A130131. %Y A380363 Cf. A238415 (initial columns same up to k=3). %K A380363 nonn,tabf,changed %O A380363 0,8 %A A380363 _Andrew Howroyd_, Jan 26 2025