This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380365 #7 Jan 28 2025 15:28:52 %S A380365 1,1,3,11,50,365,3782,47935,718202,12245679,233541489,4920828395, %T A380365 113495838798,2843930973805,76932818058660,2234631397864123, %U A380365 69368177318863458,2291843543825994905,80296746074069588380,2973657775519950500203,116065360915389313936460 %N A380365 Number of sensed combinatorial maps with n edges and without faces of degree 1. %H A380365 Andrew Howroyd, <a href="/A380365/b380365.txt">Table of n, a(n) for n = 0..200</a> %o A380365 (PARI) %o A380365 InvEulerT(v)={dirdiv(Vec(log(1+x*Ser(v)),-#v), vector(#v,n,1/n))} %o A380365 b(k,r)={if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))} %o A380365 C(k,r)={sum(i=0, r, (-1)^i/i!/k^i)} %o A380365 S(n,k)={sum(r=0, 2*n\k, if(k*r%2==0, x^(k*r/2)*b(k,r)*C(k,r)), O(x*x^n))} %o A380365 seq(n)={concat([1], InvEulerT(Vec(-1 + prod(k=1, 2*n, S(n,k)))))} %Y A380365 Cf. A006388 (planar), A170946, A380364 (rooted), A380366 (unsensed). %K A380365 nonn %O A380365 0,3 %A A380365 _Andrew Howroyd_, Jan 28 2025