This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380390 #12 Jan 23 2025 21:58:34 %S A380390 1,2,12,3,1,13,4,112,23,14,5,2,1,12,15,6,212,113,34,25,16,7,3,123,1, %T A380390 35,13,17,8,312,2,114,45,12,27,18,9,4,213,112,1,23,37,14,19,10,412, %U A380390 223,134,115,56,47,38,29,110,11,5,3,2,125,1,57,12,13,15,111 %N A380390 Array read by ascending antidiagonals: A(n, k) is equal to n/k if k | n, else to the concatenation of A003988(n, k) = floor(n/k) and A380389(n - k*floor(n/k), k). %H A380390 Stefano Spezia, <a href="/A380390/b380390.txt">Table of n, a(n) for n = 1..11325</a> (first 150 antidiagonals of the array) %e A380390 The array begins: %e A380390 1, 12, 13, 14, 15, 16, 17, 18, ... %e A380390 2, 1, 23, 12, 25, 13, 27, 14, ... %e A380390 3, 112, 1, 34, 35, 12, 37, 38, ... %e A380390 4, 2, 113, 1, 45, 23, 47, 12, ... %e A380390 5, 212, 123, 114, 1, 56, 57, 58, ... %e A380390 6, 3, 2, 112, 115, 1, 67, 34, ... %e A380390 7, 312, 213, 134, 125, 116, 1, 78, ... %e A380390 ... %e A380390 A(3, 2) = 112 since 3/2 = 1 + 1/2. %e A380390 A(4, 2) = 2 since 4/2 = 2. %t A380390 A[n_, k_]:=If[Divisible[n, k], n/k, FromDigits[Join[IntegerDigits[q=Floor[n/k]], IntegerDigits[Numerator[r=n/k-q]],IntegerDigits[Denominator[r]]]]]; Table[A[n-k+1, k], {n, 12}, {k, n}]//Flatten %Y A380390 Cf. A003988, A372523, A380389. %Y A380390 Cf. A000012 (diagonal), A000027 (1st column). %K A380390 nonn,base,easy,look,tabl %O A380390 1,2 %A A380390 _Stefano Spezia_, Jan 23 2025