This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380396 #10 Jan 25 2025 08:29:33 %S A380396 1,1,1,1,1,1,1,9,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,9,1,1,28,1,1,1,1,1,1,1, %T A380396 1,1,1,1,1,9,1,1,1,1,1,1,1,1,1,1,1,1,1,28,1,9,1,1,1,1,1,1,1,65,1,1,1, %U A380396 1,1,1,1,9,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A380396 a(n) is the sum of the unitary divisors of n that are cubes. %C A380396 The number of unitary divisors of n that are cubes is A380395(n). %H A380396 Amiram Eldar, <a href="/A380396/b380396.txt">Table of n, a(n) for n = 1..10000</a> %F A380396 a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * [d is cube], where [] is the Iverson bracket. %F A380396 a(n) >= 1, with equality if and only if n is not in A366761. %F A380396 a(n) <= A113061(n), with equality if and only if n is biquadratefree (A046100). %F A380396 Multiplicative with a(p^e) = p^e + 1 if e is divisible by 3, and 1 otherwise. %F A380396 Sum_{k=1..n} a(k) ~ c * n^(4/3) / 4, where c = zeta(4/3)/zeta(7/3) = 2.54455250463133711749... . %F A380396 Dirichlet g.f.: zeta(s) * zeta(3*s-3) / zeta(4*s-3). %F A380396 In general, the average order of the sum of the unitary divisors that are m-powers is c * n^(1+1/m) / (m+1), where c = zeta(1+1/m)/zeta(2+1/m), and its Dirichlet g.f. is zeta(s) * zeta(m*s-m) / zeta((m+1)*s-m), both for m >= 2. %e A380396 a(8) = 9 since 8 has 2 unitary divisors that are cubes, 1 = 1^3 and 8 = 2^3, and 1 + 8 = 9. %e A380396 a(216) = 252 since 216 has 4 unitary divisors that are cubes, 1 = 1^3, 8 = 2^3, 27 = 3^3 and 216 = 6^3, and 1 + 8 + 27 + 216 = 252. %t A380396 f[p_, e_] := If[Divisible[e, 3], p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A380396 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%3, 1, f[i, 1]^f[i, 2] + 1));} %Y A380396 Cf. A000578, A046100, A077610, A113061, A358347, A366761, A371334, A380395. %K A380396 nonn,easy,mult %O A380396 1,8 %A A380396 _Amiram Eldar_, Jan 23 2025