A380400 The sum of unitary divisors of n that are perfect powers (A001597).
1, 1, 1, 5, 1, 1, 1, 9, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 9, 26, 1, 28, 5, 1, 1, 1, 33, 1, 1, 1, 50, 1, 1, 1, 9, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 28, 1, 9, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 18, 1, 1, 26, 5, 1, 1, 1, 17, 82
Offset: 1
Examples
a(4) = 5 since 4 have 2 unitary divisors that are perfect powers, 1 and 4 = 2^2, and 1 + 4 = 5. a(72) = 18 since 72 have 3 unitary divisors that are perfect powers, 1, 8 = 2^3, and 9 = 3^2, and 1 + 8 + 9 = 18.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Plot of Sum_{k=1..n} a(k)/n^(3/2) and Sum_{k=1..n} A360720(k)/n^(3/2), for n = 1..1000000
Programs
-
Mathematica
ppQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := DivisorSum[n, # &, CoprimeQ[#, n/#] && ppQ[#] &]; Array[a, 100]
-
PARI
a(n) = sumdiv(n, d, d * (gcd(d, n/d) == 1 && (d == 1 || ispower(d))));
Comments