cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380402 Number of proper prime powers (in A246547) that do not exceed primorial A002110(n).

This page as a plain text file.
%I A380402 #15 Feb 25 2025 14:56:08
%S A380402 0,0,1,6,14,34,75,187,551,1954,8317,38582,200978,1125541,6562122,
%T A380402 40444003,266832233,1870169623,13424553758,101495825622,793832121165,
%U A380402 6325729776075,52616754936494,450157758564742,3999323787879764,37180986240914714,353667558431662474
%N A380402 Number of proper prime powers (in A246547) that do not exceed primorial A002110(n).
%F A380402 a(n) = Sum_{k=2..floor(log_2(P(n)))} pi(floor(P(n)^(1/k))), where P(n) = A002110(n).
%e A380402 Let s = A246547.
%e A380402 a(0) = a(1) = 0 since P(0) = 1 and P(1) = 2, and the smallest number in s is 4.
%e A380402 a(2) = 1 since P(2) = 6, and s(1) = 4 is the only term in s <= 6.
%e A380402 a(3) = 6 since P(3) = 30, and the set s(1..6) = {4, 8, 9, 16, 25, 27} contains k <= 30.
%e A380402 a(4) = 14 since P(4) = 210, and the set s(1..14) = {4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169} contains k <= 210, etc.
%t A380402 Table[Sum[PrimePi@ Floor[#^(1/k)], {k, 2, Floor@ Log2[#]}] &[Product[Prime[i], {i, n}]], {n, 0, nn}]
%o A380402 (Python)
%o A380402 from sympy import primorial, primepi, integer_nthroot
%o A380402 def A380402(n):
%o A380402     if n == 0: return 0
%o A380402     m = primorial(n)
%o A380402     return int(sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length()))) # _Chai Wah Wu_, Jan 24 2025
%Y A380402 Cf. A036386, A246547.
%K A380402 nonn,hard
%O A380402 0,4
%A A380402 _Michael De Vlieger_, Jan 23 2025
%E A380402 a(24) corrected by _Chai Wah Wu_, Jan 25 2025
%E A380402 a(26) from _Jinyuan Wang_, Feb 25 2025