cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380404 Number of prime powers that do not exceed the primorial number A002110(n).

This page as a plain text file.
%I A380404 #10 Mar 31 2025 23:09:37
%S A380404 0,1,4,16,60,377,3323,42518,646580,12285485,300378113,8028681592,
%T A380404 259488951722,9414917934636,362597756958862,15397728568256861,
%U A380404 742238179325555125,40068968503380861518,2251262473065725514585,139566579946046888545036
%N A380404 Number of prime powers that do not exceed the primorial number A002110(n).
%F A380404 a(n) = Sum_{k = 1..floor(log_2(P(n)))} pi(floor(P(n)^(1/k))), where P(n) = A002110(n).
%F A380404 a(n) = A000849(n) + A380402(n).
%e A380404 Let P = A002110 and let s = A246655.
%e A380404 a(0) = 0 since P(0) = 1, and the smallest term in s is 2.
%e A380404 a(1) = 1 since P(1) = 2.
%e A380404 a(2) = 4 since P(2) = 6 and the terms in s that do not exceed 6 are {2, 3, 4, 5}.
%e A380404 a(3) = 16 since P(3) = 30; the numbers 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, and 29 are less than 30, etc.
%t A380404 Table[Sum[PrimePi[Floor[#^(1/k)]], {k, Floor@ Log2[#]}] &[Product[Prime[i], {i, n}]], {n, 0, 14}]
%Y A380404 Cf. A000849, A002110, A182908, A246655, A380402.
%K A380404 nonn,hard,more
%O A380404 0,3
%A A380404 _Michael De Vlieger_, Jan 24 2025