cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380409 Product of prime indices plus sum of prime factors.

Original entry on oeis.org

1, 3, 5, 5, 8, 7, 11, 7, 10, 10, 16, 9, 19, 13, 14, 9, 24, 12, 27, 12, 18, 18, 32, 11, 19, 21, 17, 15, 39, 16, 42, 11, 24, 26, 24, 14, 49, 29, 28, 14, 54, 20, 57, 20, 23, 34, 62, 13, 30, 21, 34, 23, 69, 19, 31, 17, 38, 41, 76, 18, 79, 44, 29, 13, 36, 26, 86
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963.

Examples

			72 has prime factors {2,2,2,3,3} and prime indices {1,1,1,2,2}, so a(72) = 12 + 4 = 16.
		

Crossrefs

For factors instead of indices we have A075254.
For indices instead of factors we have A379681.
For minus instead of plus we have A380344, zeros A331384.
Triangles:
- A027746 = prime factors
- A112798 = prime indices
Statistics:
- A000027 = product of prime factors = row products of A027746
- A001414 = sum of prime factors = row sums of A027746
- A003963 = product of prime indices = row products of A112798
- A056239 = sum of prime indices = row sums of A112798
Combinations:
- A075254 = product of factors + sum of factors = A000027 + A001414
- A075255 = product of factors - sum of factors = A000027 - A001414
- A178503 = product of factors - sum of indices = A000027 - A056239
- A325036 = product of indices - sum of indices = A003963 - A056239
- A379681 = product of indices + sum of indices = A003963 + A056239
- A380344 = product of indices - sum of factors = A003963 - A001414
- A380345 = product of factors + sum of indices = A000027 + A056239
- A380409 = product of indices + sum of factors = A003963 + A001414
A000040 lists the primes, differences A001223.
A001222 counts prime factors with multiplicity.
A055396 gives least prime index, greatest A061395.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[Prime/@prix[n]]+Times@@prix[n],{n,100}]

Formula

a(n) = A003963(n) + A001414(n).