cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380410 Numbers with greater product of prime indices than sum of prime factors.

This page as a plain text file.
%I A380410 #5 Jan 26 2025 09:12:28
%S A380410 1,45,49,63,75,77,81,91,99,105,117,119,121,125,126,133,135,143,147,
%T A380410 150,153,161,162,165,169,171,175,182,187,189,195,198,203,207,209,210,
%U A380410 217,221,225,231,234,238,242,243,245,247,250,253,255,259,261,266,270,273
%N A380410 Numbers with greater product of prime indices than sum of prime factors.
%C A380410 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963.
%F A380410 A003963(a(n)) > A001414(a(n)).
%e A380410 126 has prime indices {1,2,2,4} and prime factors {2,3,3,7}, and 16 > 15, so 126 is in the sequence.
%e A380410 The terms together with their prime indices begin:
%e A380410      1: {}
%e A380410     45: {2,2,3}
%e A380410     49: {4,4}
%e A380410     63: {2,2,4}
%e A380410     75: {2,3,3}
%e A380410     77: {4,5}
%e A380410     81: {2,2,2,2}
%e A380410     91: {4,6}
%e A380410     99: {2,2,5}
%e A380410    105: {2,3,4}
%e A380410    117: {2,2,6}
%e A380410    119: {4,7}
%e A380410    121: {5,5}
%e A380410    125: {3,3,3}
%e A380410    126: {1,2,2,4}
%e A380410    133: {4,8}
%e A380410    135: {2,2,2,3}
%t A380410 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A380410 Select[Range[100],Times@@prix[#]>Plus@@Prime/@prix[#]&]
%Y A380410 For factors instead of indices we have A002808.
%Y A380410 The case of prime powers is A244623.
%Y A380410 For indices instead of factors we have A325037, see also A325038.
%Y A380410 The version for equality is A331384, counted by A331383.
%Y A380410 Positions of positive terms in A380344.
%Y A380410 Partitions of this type are counted by A380411.
%Y A380410 A000040 lists the primes, differences A001223.
%Y A380410 A001222 counts prime factors with multiplicity.
%Y A380410 A055396 gives least prime index, greatest A061395.
%Y A380410 Triangles:
%Y A380410 - A027746 = prime factors
%Y A380410 - A112798 = prime indices
%Y A380410 Statistics:
%Y A380410 - A000027 = product of prime factors = row products of A027746
%Y A380410 - A001414 = sum of prime factors = row sums of A027746
%Y A380410 - A003963 = product of prime indices = row products of A112798
%Y A380410 - A056239 = sum of prime indices = row sums of A112798
%Y A380410 Combinations:
%Y A380410 - A075254 = product of factors + sum of factors = A000027 + A001414
%Y A380410 - A075255 = product of factors - sum of factors = A000027 - A001414
%Y A380410 - A178503 = product of factors - sum of indices = A000027 - A056239
%Y A380410 - A325036 = product of indices - sum of indices = A003963 - A056239
%Y A380410 - A379681 = product of indices + sum of indices = A003963 + A056239
%Y A380410 - A380344 = product of indices - sum of factors = A003963 - A001414
%Y A380410 - A380345 = product of factors + sum of indices = A000027 + A056239
%Y A380410 - A380409 = product of indices + sum of factors = A003963 + A001414
%Y A380410 Cf. A000720, A175508, A301987, A319000, A325040, A325041, A325044, A379682, A380220.
%K A380410 nonn
%O A380410 1,2
%A A380410 _Gus Wiseman_, Jan 25 2025