cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380411 Number of integer partitions of n such that the product of parts is greater than the sum of primes indexed by the parts.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 4, 8, 14, 23, 39, 58, 85, 121, 168, 228, 308, 404, 533, 691, 892, 1136, 1449, 1820, 2291, 2857, 3553, 4387, 5418, 6646, 8144, 9931, 12086, 14649, 17733, 21379, 25747, 30905, 37049, 44282, 52863, 62936, 74841, 88792, 105202, 124387
Offset: 0

Views

Author

Gus Wiseman, Jan 26 2025

Keywords

Examples

			The partition y = (4,3,2) has product of parts 4*3*2 = 24 and sum of corresponding primes 7+5+3 = 15, so y is counted under a(9).
The a(0) = 1 through a(10) = 14 partitions:
  ()  .  .  .  .  .  .  (322)  (44)    (54)     (55)
                               (332)   (333)    (64)
                               (422)   (432)    (433)
                               (2222)  (522)    (442)
                                       (3222)   (532)
                                       (3321)   (622)
                                       (4221)   (3322)
                                       (22221)  (3331)
                                                (4222)
                                                (4321)
                                                (5221)
                                                (22222)
                                                (32221)
                                                (33211)
		

Crossrefs

For parts instead of primes on the RHS we have A114324.
The version for divisibility instead of inequality is A330954.
The version for equality is A331383, ranks A331384.
These partitions are ranked by A380410.
A000040 lists the primes, differences A001223.
A000041 counts integer partitions, strict A000009.
A001414 gives sum of prime factors.
A003963 gives product of prime indices
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568 (strict A379733), ranks A326149, see A379319, A380217.
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@#>Plus@@Prime/@#&]],{n,0,30}]