cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380425 E.g.f. A(x) satisfies A(x) = exp( 2 * x * A(x)^(1/2) * exp(x * A(x)^(1/2)) ).

This page as a plain text file.
%I A380425 #12 Jan 24 2025 11:59:53
%S A380425 1,2,12,116,1592,28472,630028,16649348,512197456,17993496176,
%T A380425 711065689364,31231930472492,1509776777566648,79670350504209896,
%U A380425 4557716010219325468,280992142281969312548,18574365176584473753248,1310583528463442480750048,98318677221689347734929956
%N A380425 E.g.f. A(x) satisfies A(x) = exp( 2 * x * A(x)^(1/2) * exp(x * A(x)^(1/2)) ).
%H A380425 Seiichi Manyama, <a href="/A380425/b380425.txt">Table of n, a(n) for n = 0..360</a>
%F A380425 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A162695.
%F A380425 a(n) = 2 * Sum_{k=0..n} k^(n-k) * (n+2)^(k-1) * binomial(n,k).
%o A380425 (PARI) a(n) = 2*sum(k=0, n, k^(n-k)*(n+2)^(k-1)*binomial(n, k));
%Y A380425 Cf. A162695, A380426, A380427.
%Y A380425 Cf. A360474, A380406.
%K A380425 nonn
%O A380425 0,2
%A A380425 _Seiichi Manyama_, Jan 24 2025