cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380431 Number of powerful numbers that are not powers of primes (i.e. are in A286708) that do not exceed 2^n.

This page as a plain text file.
%I A380431 #16 Jul 25 2025 04:34:30
%S A380431 0,0,0,0,0,0,1,4,9,17,28,48,75,115,178,266,403,590,865,1263,1830,2644,
%T A380431 3810,5466,7838,11210,16011,22841,32530,46315,65886,93658,133060,
%U A380431 188952,268204,380564,539823,765481,1085224,1538194,2179816,3088481,4375308,6197420,8777222
%N A380431 Number of powerful numbers that are not powers of primes (i.e. are in A286708) that do not exceed 2^n.
%H A380431 Amiram Eldar, <a href="/A380431/b380431.txt">Table of n, a(n) for n = 0..90</a>
%F A380431 a(n) = A062762(n) - A036386(n) - 1.
%F A380431 a(n) <= A372403(n), since A286708 is a proper subset of A126706.
%e A380431 Let s = A286708 = A001694 \ A246547 \ {1}.
%e A380431 a(0..5) = 0 since the smallest number in s is 36.
%e A380431 a(6) = 1 since only s(1) = 36 is smaller than 2^6 = 64.
%e A380431 a(7) = 4 since s(1..4) = {36, 72, 100, 108} are smaller than 2^7 = 128.
%e A380431 a(8) = 9 since s(1..9) = {36, 72, 100, 108, 144, 196, 200, 216, 225} are smaller than 2^8 = 256, etc.
%t A380431 Table[-1 + Sum[If[MoebiusMu[j] != 0, Floor[Sqrt[(2^n)/j^3]], 0], {j, 2^(n/3)}] - Sum[PrimePi@ Floor[2^(n/k)], {k, 2, n}], {n, 0, 45} ]
%o A380431 (Python)
%o A380431 from math import isqrt
%o A380431 from sympy import mobius, integer_nthroot, primepi
%o A380431 def A380431(n):
%o A380431     def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
%o A380431     l, m = 0, 1<<n
%o A380431     c, j = -1-sum(primepi(integer_nthroot(m, k)[0]) for k in range(2, m.bit_length()))+squarefreepi(integer_nthroot(m,3)[0]), isqrt(m)
%o A380431     while j>1:
%o A380431         k2 = integer_nthroot(m//j**2,3)[0]+1
%o A380431         w = squarefreepi(k2-1)
%o A380431         c += j*(w-l)
%o A380431         l, j = w, isqrt(m//k2**3)
%o A380431     return c-l # _Chai Wah Wu_, Jan 30 2025
%Y A380431 Cf. A001694, A036386, A062762, A246547, A286708, A372403.
%K A380431 nonn,hard
%O A380431 0,8
%A A380431 _Michael De Vlieger_, Jan 24 2025