A380071 Integers with at least 1 instance of 2 or more Pythagorean proper factorizations that yield the same diagonal length.
880, 1344, 3120, 3240, 3840, 4032, 4400, 5184, 5280, 6144, 6300, 6480, 6720, 7680, 8448, 8640, 10752, 11520, 11880, 12096, 14080, 14592, 14784, 14960, 15120, 15360, 16128, 16200, 16560, 17820, 18240, 18432, 19200, 19440, 20700, 21120, 21504, 21840, 22000
Offset: 1
Keywords
Examples
a(1) = 880: 2 * 2 * 11 * 20 = 2 * 4 * 5 * 22 = 880 and 2^2 + 2^2 + 11^2 + 20^2 = 2^2 + 4^2 + 5^2 + 22^2 = 23^2. a(2) = 1344: 2 * 2 * 2 * 2 * 2 * 3 * 14 = 4 * 4 * 7 * 12 = 1344 and 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 14^2 = 4^2 + 4^2 + 7^2 + 12^2 = 15^2.
Crossrefs
Subsequence of A380436.
Programs
-
PARI
is_a380071(x, f=List(), ~m)={if(!m, m=Map()); my(r=x/if(#f, vecprod(Vec(f)), 1)); if(r==1, my(t=sum(i=1, #f, f[i]^2)); if(issquare(t), mapput(m, t, if(mapisdefined(m, t), mapget(m, t), 0)+1)); return(0)); my(d, c=0); fordiv(r, d, if(d==1 || d==x || (#f && d
0 && vecmax(m[2])>=2, 1, 0), 0))} \\ Charles L. Hohn, Mar 09 2025
Comments