A380446 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) > A006530(k), where omega = A001221.
36, 144, 216, 324, 576, 900, 1296, 1728, 2304, 2916, 3600, 5184, 5832, 7776, 8100, 9216, 11664, 13824, 14400, 20736, 22500, 26244, 27000, 32400, 36864, 44100, 46656, 57600, 72900, 82944, 90000, 104976, 110592, 129600, 147456, 157464, 176400, 186624, 202500, 216000
Offset: 1
Keywords
Examples
Table of n, a(n) for select n, showing exponents m of prime power factors p^m | a(n) for primes p listed in the heading. Terms that also appear in A368682 are marked by "#": Exponents n a(n) 2.3.5.7.11 ----------------------------------- 1 36 = 6^2 # 2.2 2 144 = 12^2 # 4.2 3 216 = 6^3 # 3.3 4 324 = 18^2 2.4 5 576 = 24^2 # 6.2 6 900 = 30^2 # 2.2.2 7 1296 = 6^4 # 4.4 8 1728 = 12^3 # 6.3 9 2304 = 48^2 # 8.2 10 2916 = 54^2 2.6 11 3600 = 60^2 # 4.2.2 12 5184 = 72^2 # 6.4 26 44100 = 210^2 # 2.2.2.2 90 5336100 = 2310^2 # 2.2.2.2.2
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Fast Mathematica algorithm for A055932.
Crossrefs
Programs
-
Mathematica
(* Load linked Mathematica algorithm, then: *) Select[Union@ Flatten[a055932[7][[3 ;; -1, 2 ;; -1]] ], And[Divisible[#1, Apply[Times, #2[[All, 1]] ]^2], GCD @@ #2[[All, -1]] > 1] & @@ {#, FactorInteger[#]} &]
Comments