A380451 Number of disjoint-path coverings for 2 X n rectangular grids, admitting zero-length paths.
2, 15, 95, 604, 3835, 24349, 154594, 981531, 6231827, 39566420, 251210695, 1594958889, 10126534850, 64294264119, 408209961239, 2591761096236, 16455320099427, 104476280613925, 663329132764770, 4211535247894499, 26739409243687915, 169770870862086564, 1077890252944724559, 6843620413168932241, 43450750418785228802
Offset: 1
Examples
For n = 1 the a(1) = 2 solutions are * * *-* For n = 2 the a(2) = 15 solutions are * * * * *-* * * * * * * | | * * *-* * * * * *-* *-* * * * * *-* * * | | | | | | * * * * *-* *-* *-* * * *-* *-* * * *-* | | | | | | * * *-* *-* *-*
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge University Press (2012).
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-4,-1,1).
Crossrefs
Cf. A003763.
Programs
-
Maple
a:=n->`if`(n<5,[2,15,95,604][n],7*a(n-1)-4*a(n-2)-a(n-3)+a(n-4));
-
Mathematica
a[n_]:=LinearRecurrence[{7,-4,-1,1},{2,15,95,604},n][[-1]]
-
Python
from functools import reduce; a=lambda n:reduce(lambda s,_:s+[7*s[-1]-4*s[-2]-s[-3]+s[-4]],range(4,n),[2,15,95,604])[n-1]
Formula
Recurrence: a(n) = 7*a(n-1) - 4*a(n-2) - a(n-3) + a(n-4), where a(1) = 2, a(2) = 15, a(3) = 95, a(4) = 604 (for proof, see the comments section).
Extensions
a(16) onwards corrected by Anton M. Alekseev, Jul 06 2025
Comments