This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380452 #49 Aug 07 2025 18:32:48 %S A380452 324,2916,5832,8100,11664,22500,26244,72900,90000,104976,157464, %T A380452 202500,236196,291600,360000,396900,419904,562500,656100,729000, %U A380452 944784,1102500,1259712,1440000,1822500,1889568,2125764,2160900,2250000,2624400,3375000,3572100,3779136 %N A380452 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) > A006530(k) that are not also products of primorials, where omega = A001221. %C A380452 Perfect powers k^m, m > 1, for composite k in A056808. %C A380452 Terms are even. For a(n) such that omega(a(n)) > 2, a(n) mod 10 = 0, where omega = A001221. %H A380452 Michael De Vlieger, <a href="/A380452/b380452.txt">Table of n, a(n) for n = 1..16384</a> %H A380452 Michael De Vlieger, <a href="/A380452/a380452.txt">Fast Mathematica algorithm for A055932</a>. %F A380452 Intersection of A131605 and A056808 = A380446 \ A368682. %F A380452 Set difference A380446 \ A025487. %e A380452 Table of n, a(n) for select n, showing exponents m of prime power factors p^m | a(n) for primes p listed in the heading: %e A380452 Exponents %e A380452 n a(n) 2.3.5 %e A380452 ------------------------------- %e A380452 1 324 = 18^2 2.4 %e A380452 2 2916 = 54^2 2.6 %e A380452 3 5832 = 18^3 3.6 %e A380452 4 8100 = 90^2 2.4.2 %e A380452 5 11664 = 108^2 4.6 %e A380452 6 22500 = 150^2 2.2.4 %e A380452 7 26244 = 162^2 2.8 %e A380452 8 72900 = 270^2 2.6.2 %e A380452 9 90000 = 300^2 4.2.4 %e A380452 10 104976 = 18^4 4.8 %e A380452 11 157464 = 54^3 3.9 %e A380452 12 202500 = 450^2 2.4.4 %t A380452 (* Load linked Mathematica algorithm, then: *) %t A380452 Select[Union@ Flatten[a055932[7][[3 ;; -1, 2 ;; -1]] ], And[Divisible[#1, Apply[Times, #2[[All, 1]] ]^2], GCD @@ #2[[All, -1]] > 1] & @@ {#, FactorInteger[#]} &] %Y A380452 Cf. A001597, A002110, A006530, A007947, A053669, A055932, A131605, A246547, A304250, A368682, A369374, A380446. %K A380452 nonn %O A380452 1,1 %A A380452 _Michael De Vlieger_, Jul 25 2025