This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380453 #46 Jun 28 2025 11:50:22 %S A380453 1,3,6,1,20,6,60,33,4,291,285,48,1310,2115,708,30,6975,16533,9807, %T A380453 1155,37746,126501,119436,29910,900,215602,972441,1355400,601364, %U A380453 58032,1262874,7451679,14561360,10260804,2112300,54990,7611156,57167260,150429819,156469887,57017238,4764654 %N A380453 Number of dessins d'enfants D(n,g) with n edges of genus g, read by rows. %C A380453 Note that Sum_{g>=0} D(n,g) gives A057005 which is the number of dessins d'enfants with n edges (as one would hope). %C A380453 We get a new genus every two edges. %C A380453 n=7 is the first time we have more dessins of genus 1 than genus 0. %H A380453 Paawan Jethva, <a href="https://srs.amsi.org.au/wp-content/uploads/sites/92/2023/03/jethva_paawan_vrs-report.pdf">Exploring the Euler Characteristics of Dessins d’Enfants</a>, 2023, page 15. %H A380453 Ján Karabáš, <a href="https://www.savbb.sk/~karabas/science.html#cyclic">Enumeration of actions of cyclic groups on orientable surfaces</a>. %H A380453 A. Mednykh and R. Nedela, <a href="https://doi.org/10.1007/s10958-017-3555-5">Recent progress in enumeration of hypermaps</a>, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), tables 2-8 and theorems 8-12. Theorem 12 has typos; the corrected formula can be inferred from Karabáš's tables. %e A380453 Triangle D(n,g) begins: %e A380453 n\g 0 1 2 3 4 ... %e A380453 1 1 %e A380453 2 3 %e A380453 3 6 1 %e A380453 4 20 6 %e A380453 5 60 33 4 %e A380453 6 291 285 48 %e A380453 7 1310 2115 708 30 %e A380453 8 6975 16533 9807 1155 %e A380453 9 37746 126501 119436 29910 900 %e A380453 ... %Y A380453 Cf. A057005. %Y A380453 Columns: A090371, A118094, A214819, A214820, A356694. A321710 is the rooted version. %K A380453 nonn,tabf %O A380453 1,2 %A A380453 _Paawan Jethva_, Jun 22 2025 %E A380453 Rows 10-11 from _Andrei Zabolotskii_, Jun 28 2025