cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380456 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) < A006530(k), where omega = A001221.

Original entry on oeis.org

100, 196, 225, 400, 441, 484, 676, 784, 1000, 1089, 1156, 1225, 1444, 1521, 1600, 1764, 1936, 2025, 2116, 2500, 2601, 2704, 2744, 3025, 3136, 3249, 3364, 3375, 3844, 3969, 4225, 4356, 4624, 4761, 4900, 5476, 5625, 5776, 5929, 6084, 6400, 6724, 7056, 7225, 7396
Offset: 1

Views

Author

Michael De Vlieger, Jul 25 2025

Keywords

Comments

Perfect powers k^m, m > 1, for composite k in A080259.

Examples

			Table of n, a(n) for n = 1..12:
 n    a(n)
-----------------------------
 1    100 = 10^2 = 2^2 *  5^2
 2    196 = 14^2 = 2^2 *  7^2
 3    225 = 15^2 = 3^2 *  5^2
 4    400 = 20^2 = 2^4 *  5^2
 5    441 = 21^2 = 3^2 *  7^2
 6    484 = 22^2 = 2^2 * 11^2
 7    676 = 26^2 = 2^2 * 13^2
 8    784 = 28^2 = 2^4 *  7^2
 9   1000 = 10^3 = 2^3 *  5^3
10   1089 = 33^2 = 3^2 * 11^2
11   1156 = 34^2 = 2^2 * 17^2
12   1225 = 35^2 = 5^2 *  7^2
		

Crossrefs

Programs

  • Mathematica
    a053669[x_] := Block[{q = 2}, While[Divisible[x, q], q = NextPrime[q] ], q]; nn = 2^13; Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], And[a053669[#1] < #2[[-1, 1]], GCD @@ #2[[;; , -1]] > 1] & @@ {#, FactorInteger[#]} &]

Formula

Intersection of A131605 and A080259 = A131605 \ A055932 = A131605 \ A380446.