A380456 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) < A006530(k), where omega = A001221.
100, 196, 225, 400, 441, 484, 676, 784, 1000, 1089, 1156, 1225, 1444, 1521, 1600, 1764, 1936, 2025, 2116, 2500, 2601, 2704, 2744, 3025, 3136, 3249, 3364, 3375, 3844, 3969, 4225, 4356, 4624, 4761, 4900, 5476, 5625, 5776, 5929, 6084, 6400, 6724, 7056, 7225, 7396
Offset: 1
Keywords
Examples
Table of n, a(n) for n = 1..12: n a(n) ----------------------------- 1 100 = 10^2 = 2^2 * 5^2 2 196 = 14^2 = 2^2 * 7^2 3 225 = 15^2 = 3^2 * 5^2 4 400 = 20^2 = 2^4 * 5^2 5 441 = 21^2 = 3^2 * 7^2 6 484 = 22^2 = 2^2 * 11^2 7 676 = 26^2 = 2^2 * 13^2 8 784 = 28^2 = 2^4 * 7^2 9 1000 = 10^3 = 2^3 * 5^3 10 1089 = 33^2 = 3^2 * 11^2 11 1156 = 34^2 = 2^2 * 17^2 12 1225 = 35^2 = 5^2 * 7^2
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
a053669[x_] := Block[{q = 2}, While[Divisible[x, q], q = NextPrime[q] ], q]; nn = 2^13; Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], And[a053669[#1] < #2[[-1, 1]], GCD @@ #2[[;; , -1]] > 1] & @@ {#, FactorInteger[#]} &]
Comments