cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380473 Numbers k neither squarefree nor prime power (i.e., in A126706) such that A119288(k) <= A003557(k) < A053669(k) < A006530(k).

Original entry on oeis.org

126, 168, 198, 234, 264, 306, 312, 342, 408, 414, 456, 522, 552, 558, 666, 696, 738, 744, 774, 846, 888, 954, 984, 990, 1032, 1062, 1098, 1128, 1170, 1206, 1272, 1278, 1314, 1320, 1386, 1416, 1422, 1464, 1494, 1530, 1560, 1602, 1608, 1638, 1650, 1704, 1710, 1746
Offset: 1

Views

Author

Michael De Vlieger, Jul 22 2025

Keywords

Comments

Let rad = A007947, p = A119288, q = A053669, g = A006530, and r = A003557.
Numbers k in A126706 such that p <= r < q < g.
Terms are products k of a number s in A033845 and a number t in A007310 with at least one prime power factor p^m | k such that m > 1.

Examples

			Table of n, a(n) for select n:
   n    a(n)                       r   q
  --------------------------------------
   1    126 = 2 * 3^2 * 7          3   5
   2    168 = 2^3 * 3 * 7          4   5
   3    198 = 2 * 3^2 * 11         3   5
   4    234 = 2 * 3^2 * 13         3   5
   5    264 = 2^3 * 3 * 11         4   5
   6    306 = 2 * 3^2 * 17         3   5
   7    312 = 2^3 * 3 * 13         4   5
  24    990 = 2 * 3^2 * 5 * 11     3   7
  29   1170 = 2 * 3^2 * 5 * 13     3   7
  45   1650 = 2 * 3 * 5^2 * 11     5   7
  57   1980 = 2^2 * 3^2 * 5 * 11   6   7
  68   2340 = 2^2 * 3^2 * 5 * 13   6   7
		

Crossrefs

Programs

  • Mathematica
    a053669[x_] := Block[{q = 2}, While[Divisible[x, q], q = NextPrime[q] ]; q];
    s = Select[Range[2^12], Nor[SquareFreeQ[#], PrimePowerQ[#]] &];
    Select[s, And[#3 < #4 < #2[[-1, 1]], #2[[2, 1]] <= #3] & @@
      {#1, #2, #1/Apply[Times, #2[[All, 1]]], a053669[#1]} & @@
      {#, FactorInteger[#]} &]

Formula

Intersection of A364998 and A080259 = A364998 \ A055932 = A364998 \ A369540.