A380473 Numbers k neither squarefree nor prime power (i.e., in A126706) such that A119288(k) <= A003557(k) < A053669(k) < A006530(k).
126, 168, 198, 234, 264, 306, 312, 342, 408, 414, 456, 522, 552, 558, 666, 696, 738, 744, 774, 846, 888, 954, 984, 990, 1032, 1062, 1098, 1128, 1170, 1206, 1272, 1278, 1314, 1320, 1386, 1416, 1422, 1464, 1494, 1530, 1560, 1602, 1608, 1638, 1650, 1704, 1710, 1746
Offset: 1
Keywords
Examples
Table of n, a(n) for select n: n a(n) r q -------------------------------------- 1 126 = 2 * 3^2 * 7 3 5 2 168 = 2^3 * 3 * 7 4 5 3 198 = 2 * 3^2 * 11 3 5 4 234 = 2 * 3^2 * 13 3 5 5 264 = 2^3 * 3 * 11 4 5 6 306 = 2 * 3^2 * 17 3 5 7 312 = 2^3 * 3 * 13 4 5 24 990 = 2 * 3^2 * 5 * 11 3 7 29 1170 = 2 * 3^2 * 5 * 13 3 7 45 1650 = 2 * 3 * 5^2 * 11 5 7 57 1980 = 2^2 * 3^2 * 5 * 11 6 7 68 2340 = 2^2 * 3^2 * 5 * 13 6 7
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a053669[x_] := Block[{q = 2}, While[Divisible[x, q], q = NextPrime[q] ]; q]; s = Select[Range[2^12], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; Select[s, And[#3 < #4 < #2[[-1, 1]], #2[[2, 1]] <= #3] & @@ {#1, #2, #1/Apply[Times, #2[[All, 1]]], a053669[#1]} & @@ {#, FactorInteger[#]} &]
Comments