cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380487 Numbers such that the sum of prime factors without repetition divides the product of prime factors without repetition and each division yields a greater quotient.

This page as a plain text file.
%I A380487 #33 May 02 2025 04:21:49
%S A380487 2,30,70,105,231,627,805,1122,2730,3570,8778,9282,10626,15015,24738,
%T A380487 24882,31746,33495,33915,44330,45885,49335,51051,62985,72930,95095,
%U A380487 106590,132990,145145,156009,170170,222870,230945,274505,290598,329406,335478,418285,449995
%N A380487 Numbers such that the sum of prime factors without repetition divides the product of prime factors without repetition and each division yields a greater quotient.
%C A380487 Conjecture: There exists m, the smallest positive integer such that a(k)|a(k+m), for all k.
%H A380487 Robert Israel, <a href="/A380487/b380487.txt">Table of n, a(n) for n = 1..168</a>
%e A380487 2 is a term because sopf(2)|rad(2) = 2|2.
%e A380487 30 is a term because sopf(30)|rad(30) = 10|30.
%e A380487 70 is a term because sopf(70)|rad(70) = 14|70.
%p A380487 f:= proc(n,m) local q,S;
%p A380487    S:= numtheory:-factorset(n);
%p A380487    q:= convert(S,`*`)/convert(S,`+`);
%p A380487    if q::integer and q > m  then q else 0 fi;
%p A380487 end proc:
%p A380487 m:= 0: R:= NULL: count:= 0:
%p A380487 for n from 2 while count < 50 do
%p A380487   v:= f(n,m);
%p A380487   if v > 0 then
%p A380487     m:= v;  R:= R, n; count:= count+1;
%p A380487   fi;
%p A380487 od:
%p A380487 R; # _Robert Israel_, Apr 30 2025
%t A380487 s={};q=0;Do[pf=Times@@First/@FactorInteger[n];sf=Total[First/@FactorInteger[n]];If[Divisible[pf,sf]&&pf/sf>q,AppendTo[s,n];q=pf/sf],{n,2,449995}];s (* _James C. McMahon_, Apr 03 2025 *)
%o A380487 (Sage)
%o A380487 def sopf(n): return sum(set(prime_factors(n)))
%o A380487 def rad(n):
%o A380487     rad = 1
%o A380487     for p in set(prime_factors(n)): rad *= p
%o A380487     return rad
%o A380487 def output(limit=39):
%o A380487     results = []
%o A380487     n = 2
%o A380487     result = 0
%o A380487     while len(results) < limit:
%o A380487         sopf_n = sopf(n)
%o A380487         rad_n = rad(n)
%o A380487         if rad_n % sopf_n == 0 and result < rad_n / sopf_n:
%o A380487             results.append(n)
%o A380487             result = rad_n / sopf_n
%o A380487             print(n, end=', ')
%o A380487         n += 1
%o A380487     return results
%o A380487 output()
%o A380487 (PARI) lista(nn) = my(m=0, list=List()); for (n=2, nn, my(f=factor(n)[,1], q=factorback(f)/vecsum(f)); if ((denominator(q) == 1) && (q>m), listput(list, n); m=q);); Vec(list); \\ _Michel Marcus_, Mar 29 2025
%Y A380487 Cf. A007947, A008472.
%Y A380487 Subsequence of A086486.
%K A380487 nonn
%O A380487 1,1
%A A380487 _Torlach Rush_, Jan 24 2025