This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380487 #33 May 02 2025 04:21:49 %S A380487 2,30,70,105,231,627,805,1122,2730,3570,8778,9282,10626,15015,24738, %T A380487 24882,31746,33495,33915,44330,45885,49335,51051,62985,72930,95095, %U A380487 106590,132990,145145,156009,170170,222870,230945,274505,290598,329406,335478,418285,449995 %N A380487 Numbers such that the sum of prime factors without repetition divides the product of prime factors without repetition and each division yields a greater quotient. %C A380487 Conjecture: There exists m, the smallest positive integer such that a(k)|a(k+m), for all k. %H A380487 Robert Israel, <a href="/A380487/b380487.txt">Table of n, a(n) for n = 1..168</a> %e A380487 2 is a term because sopf(2)|rad(2) = 2|2. %e A380487 30 is a term because sopf(30)|rad(30) = 10|30. %e A380487 70 is a term because sopf(70)|rad(70) = 14|70. %p A380487 f:= proc(n,m) local q,S; %p A380487 S:= numtheory:-factorset(n); %p A380487 q:= convert(S,`*`)/convert(S,`+`); %p A380487 if q::integer and q > m then q else 0 fi; %p A380487 end proc: %p A380487 m:= 0: R:= NULL: count:= 0: %p A380487 for n from 2 while count < 50 do %p A380487 v:= f(n,m); %p A380487 if v > 0 then %p A380487 m:= v; R:= R, n; count:= count+1; %p A380487 fi; %p A380487 od: %p A380487 R; # _Robert Israel_, Apr 30 2025 %t A380487 s={};q=0;Do[pf=Times@@First/@FactorInteger[n];sf=Total[First/@FactorInteger[n]];If[Divisible[pf,sf]&&pf/sf>q,AppendTo[s,n];q=pf/sf],{n,2,449995}];s (* _James C. McMahon_, Apr 03 2025 *) %o A380487 (Sage) %o A380487 def sopf(n): return sum(set(prime_factors(n))) %o A380487 def rad(n): %o A380487 rad = 1 %o A380487 for p in set(prime_factors(n)): rad *= p %o A380487 return rad %o A380487 def output(limit=39): %o A380487 results = [] %o A380487 n = 2 %o A380487 result = 0 %o A380487 while len(results) < limit: %o A380487 sopf_n = sopf(n) %o A380487 rad_n = rad(n) %o A380487 if rad_n % sopf_n == 0 and result < rad_n / sopf_n: %o A380487 results.append(n) %o A380487 result = rad_n / sopf_n %o A380487 print(n, end=', ') %o A380487 n += 1 %o A380487 return results %o A380487 output() %o A380487 (PARI) lista(nn) = my(m=0, list=List()); for (n=2, nn, my(f=factor(n)[,1], q=factorback(f)/vecsum(f)); if ((denominator(q) == 1) && (q>m), listput(list, n); m=q);); Vec(list); \\ _Michel Marcus_, Mar 29 2025 %Y A380487 Cf. A007947, A008472. %Y A380487 Subsequence of A086486. %K A380487 nonn %O A380487 1,1 %A A380487 _Torlach Rush_, Jan 24 2025