cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380500 Table T(n,k) = phi(phi(prime(n)^k)), n >= 1, k >= 0, read by upwards antidiagonals, where phi = A000010.

This page as a plain text file.
%I A380500 #30 Feb 19 2025 16:17:35
%S A380500 1,1,1,1,1,1,1,2,2,2,1,2,8,6,4,1,4,12,40,18,8,1,4,40,84,200,54,16,1,8,
%T A380500 48,440,588,1000,162,32,1,6,128,624,4840,4116,5000,486,64,1,10,108,
%U A380500 2176,8112,53240,28812,25000,1458,128,1,12,220,2052,36992,105456,585640,201684,125000,4374,256
%N A380500 Table T(n,k) = phi(phi(prime(n)^k)), n >= 1, k >= 0, read by upwards antidiagonals, where phi = A000010.
%C A380500 For n >= 2, k >= 1, T(n,k) is the number of primitive roots of prime(n)^k.
%H A380500 Michael De Vlieger, <a href="/A380500/b380500.txt">Table of n, a(n) for n = 1..11476</a> (rows n = 1..150, flattened).
%F A380500 T(n,k) = A010554(prime(n)^k) = A046144(prime(n)^k).
%F A380500 T(n,0) = 1.
%F A380500 T(n,1) = phi(prime(n)-1) = A008330(n).
%F A380500 T(n,2) = (prime(n)-1) * phi(prime(n)-1)
%F A380500        = (prime(n)-1)^2 * Product_{q|(prime(n)-1)} 1-1/q, prime q.
%F A380500        = A104039(n).
%F A380500 For k > 1, T(n,k) = prime(n)^(k-2) * A104039(n).
%F A380500 T(n,2) > prime(n) for n > 2.
%F A380500 T(n,k) < prime(n)^k for all n and for k > 0.
%e A380500 Table begins as follows:
%e A380500 n\k  0   1     2      3       4        5          6           7
%e A380500 ---------------------------------------------------------------
%e A380500 1:   1   1     1      2       4        8         16          32
%e A380500 2:   1   1     2      6      18       54        162         486
%e A380500 3:   1   2     8     40     200     1000       5000       25000
%e A380500 4:   1   2    12     84     588     4116      28812      201684
%e A380500 5:   1   4    40    440    4840    53240     585640     6442040
%e A380500 6:   1   4    48    624    8112   105456    1370928    17822064
%e A380500 7:   1   8   128   2176   36992   628864   10690688   181741696
%t A380500 Table[EulerPhi[EulerPhi[Prime[#]^k]] &[n - k + 1], {n, 0, 10}, {k, 0, n}] // Flatten
%Y A380500 Cf. A000010, A000040, A001248, A008330, A010554, A046144, A104039, A246655.
%K A380500 nonn,easy,tabl
%O A380500 1,8
%A A380500 _Michael De Vlieger_, Feb 04 2025