cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380517 Absolute value of the minimum coefficient of (1 - x)^3 * (1 - x^2)^3 * (1 - x^3)^3 * ... * (1 - x^n)^3.

This page as a plain text file.
%I A380517 #8 Jan 28 2025 15:56:19
%S A380517 1,3,6,15,24,50,81,186,305,561,972,1761,3129,5789,10470,19023,33549,
%T A380517 62388,113418,205653,366198,674085,1226181,2211462,3953679,7287672,
%U A380517 13261764,24005627,42998125,79033269,143513301,260061408,465444889,855436899,1553736558,2813222766,5052061560,9250734231
%N A380517 Absolute value of the minimum coefficient of (1 - x)^3 * (1 - x^2)^3 * (1 - x^3)^3 * ... * (1 - x^n)^3.
%p A380517 p:= proc(n) option remember;
%p A380517      `if`(n=0, 1, expand(p(n-1)*(1-x^n)^3))
%p A380517     end:
%p A380517 a:= n-> abs(min(coeffs(p(n)))):
%p A380517 seq(a(n), n=0..37);  # _Alois P. Heinz_, Jan 26 2025
%t A380517 Table[Min[CoefficientList[Product[(1 - x^k)^3, {k, 1, n}], x]], {n, 0, 37}] // Abs
%o A380517 (PARI) a(n) = abs(vecmin(Vec(prod(k=1, n, (1-x^k)^3)))); \\ _Michel Marcus_, Jan 26 2025
%Y A380517 Cf. A010816, A086394, A369709, A369711, A369983, A380499.
%K A380517 nonn
%O A380517 0,2
%A A380517 _Ilya Gutkovskiy_, Jan 26 2025