A380519 Decimal expansion of least x>1 so that Re(x^rho) has a local maximum, with rho as the first zeta zero.
1, 0, 0, 2, 5, 0, 4, 7, 1, 0, 5, 5, 1, 4, 0, 7, 1, 3, 1, 3, 9, 6, 8, 5, 3, 7, 8, 2, 8, 0, 2, 2, 2, 4, 7, 5, 9, 1, 9, 1, 2, 2, 7, 9, 4, 8, 6, 1, 5, 6, 5, 1, 7, 8, 1, 0, 0, 4, 2, 1, 3, 5, 7, 5, 0, 8, 5, 1, 5, 1, 9, 3, 5, 1, 1, 9, 9, 4, 6, 4, 8, 3, 0, 7, 7, 2
Offset: 1
Examples
1.00250471055140713139685378280222475919122794861...
Programs
-
Mathematica
RealDigits[x /. FindRoot[D[Sqrt[x] Cos[Im@ZetaZero@1 Log[x]], x], {x, 1}, WorkingPrecision -> 100][[1]]][[1]]
Formula
Equals exp(arccos(2*t/sqrt(1+4*t^2))/t), with t = Im(rho).
Comments