This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380543 #19 Jul 20 2025 23:30:57 %S A380543 12,18,24,48,54,60,90,96,120,150,162,180,192,240,270,300,360,384,420, %T A380543 450,480,486,540,600,630,720,750,768,810,840,960,1050,1080,1200,1260, %U A380543 1350,1440,1458,1470,1500,1536,1620,1680,1890,1920,2100,2160,2250,2400,2430 %N A380543 Nonsquarefree weak numbers k whose squarefree kernel is a primorial. %C A380543 Numbers in this sequence have the following properties: %C A380543 The number a(n) is such that rad(a(n))^2 does not divide a(n), i.e., a(n) is not powerful (i.e., in A001694), where rad = A007947. %C A380543 For i > 1, prime(i) | a(n) implies prime(i-1) | a(n). %H A380543 Michael De Vlieger, <a href="/A380543/b380543.txt">Table of n, a(n) for n = 1..10000</a> %F A380543 Intersection of A055932 and A332785, where A332785 = A052485 \ A005117 = A126706 \ A001694. %F A380543 The union of this sequence and A369374 is A126706. %e A380543 Table of n, a(n) and prime decomposition for n = 1..12: %e A380543 n a(n) prime decomposition %e A380543 ------------------------------ %e A380543 1 12 2^2 * 3 %e A380543 2 18 2 * 3^2 %e A380543 3 24 2^3 * 3 %e A380543 4 48 2^4 * 3 %e A380543 5 54 2 * 3^3 %e A380543 6 60 2^2 * 3 * 5 %e A380543 7 90 2 * 3^2 * 5 %e A380543 8 96 2^5 * 3 %e A380543 9 120 2^3 * 3 * 5 %e A380543 10 150 2 * 3 * 5^2 %e A380543 11 162 2 * 3^4 %e A380543 12 180 2^2 * 3^2 * 5 %t A380543 (* Load Fast Mathematica algorithm for A055932 linked at A377854, then: *) %t A380543 rad[x_] := Times @@ FactorInteger[x][[All, 1]]; Select[Union@ Flatten[f[6][[3 ;; -1, 2 ;; -1]] ], ! Divisible[#, rad[#]^2] &] %Y A380543 Cf. A001694, A002110, A007947, A013929, A052485, A055932, A126706, A286708, A332785, A369374, A386223, A386224. %K A380543 nonn,easy %O A380543 1,1 %A A380543 _Michael De Vlieger_, Jul 15 2025