cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386223 Nonsquarefree weak numbers k that are products of primorials.

Original entry on oeis.org

12, 24, 48, 60, 96, 120, 180, 192, 240, 360, 384, 420, 480, 720, 768, 840, 960, 1080, 1260, 1440, 1536, 1680, 1920, 2160, 2520, 2880, 3072, 3360, 3840, 4320, 4620, 5040, 5760, 6144, 6300, 6480, 6720, 7560, 7680, 8640, 9240, 10080, 11520, 12288, 12600, 12960, 13440
Offset: 1

Views

Author

Michael De Vlieger, Jul 15 2025

Keywords

Examples

			Table of n, a(n) and prime decomposition for n = 1..12:
 n   a(n)  prime decomposition
------------------------------
 1    12   2^2 * 3
 2    24   2^3 * 3
 3    48   2^4 * 3
 4    60   2^2 * 3 * 5
 5    96   2^5 * 3
 6   120   2^3 * 3 * 5
 7   180   2^2 * 3^2 * 5
 8   192   2^6 * 3
 9   240   2^4 * 3 * 5
10   360   2^3 * 3^2 * 5
11   384   2^7 * 3
12   420   2^2 * 3 * 5 * 7
		

Crossrefs

Programs

  • Mathematica
    (* Load May 19 2018 function f at A025487, then run the following: *)
    rad[x_] := Times @@ FactorInteger[x][[All, 1]]; Select[Union@ Flatten[f[6][[3 ;; -1, 2 ;; -1]] ], ! Divisible[#, rad[#]^2] &]

Formula

Subset of A380543.
Intersection of A025487 and A332785, where A332785 = A052485 \ A005117 = A126706 \ A001694.
The union of this sequence and A364930 is A126706.

A386224 Nonsquarefree weak numbers k that are not products of primorials, whose squarefree kernel is a primorial.

Original entry on oeis.org

18, 54, 90, 150, 162, 270, 300, 450, 486, 540, 600, 630, 750, 810, 1050, 1200, 1350, 1458, 1470, 1500, 1620, 1890, 2100, 2250, 2400, 2430, 2940, 3000, 3150, 3240, 3750, 3780, 4050, 4200, 4374, 4410, 4800, 4860, 5250, 5670, 5880, 6000, 6750, 6930, 7290, 7350, 7500
Offset: 1

Views

Author

Michael De Vlieger, Jul 15 2025

Keywords

Examples

			Table of n, a(n) and prime decomposition for n = 1..12:
 n   a(n)  prime decomposition
------------------------------
 1    18   2 * 3^2
 2    54   2 * 3^3
 3    90   2 * 3^2 * 5
 4   150   2 * 3 * 5^2
 5   162   2 * 3^4
 6   270   2 * 3^3 * 5
 7   300   2^2 * 3 * 5^2
 8   450   2 * 3^2 * 5^2
 9   486   2 * 3^5
10   540   2^2 * 3^3 * 5
11   600   2^3 * 3 * 5^2
12   630   2 * 3^2 * 5 * 7
		

Crossrefs

Programs

  • Mathematica
    (* Load May 19 2018 function f at A025487, then run the following: *)
    fQ[x_] :=
     Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &,
       Nest[Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} &,
         If[x == 1, {0},
           Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@
             Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ x], 2] ] == x;
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    Select[Union@ Flatten@ f[6][[3 ;; -1, 2 ;; -1]], Nor[Divisible[#, rad[#]^2], fQ[#]] &]

Formula

{a(n)} = A380543 \ A386223.
Intersection of A056808 and A332785, where A332785 = A052485 \ A005117 = A126706 \ A001694, and A056808 = A055932 \ A025487.
The union of this sequence and A369420 is A126706.

A386294 Nonsquarefree weak numbers k such that A053669(k) < A006530(k).

Original entry on oeis.org

20, 28, 40, 44, 45, 50, 52, 56, 63, 68, 75, 76, 80, 84, 88, 92, 98, 99, 104, 112, 116, 117, 124, 126, 132, 135, 136, 140, 147, 148, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 184, 188, 189, 198, 204, 207, 208, 212, 220, 224, 228, 232, 234, 236, 242, 244
Offset: 1

Views

Author

Michael De Vlieger, Jul 19 2025

Keywords

Examples

			Table of n, a(n) and prime decomposition for n = 1..12:
 n  a(n)
------------------
 1   20 = 2^2 * 5
 2   28 = 2^2 * 7
 3   40 = 2^3 * 5
 4   44 = 2^2 * 11
 5   45 = 3^2 * 5
 6   50 = 2 * 5^2
 7   52 = 2^2 * 13
 8   56 = 2^3 * 7
 9   63 = 3^2 * 7
10   68 = 2^2 * 17
11   75 = 3 * 5^2
12   76 = 2^2 * 19
Let q = A053669 and let gpf = A006530.
The number 12 = 2^2*3 is not in the sequence since q(12) > gpf(12), i.e., 5 > 3.
The number 18 = 2*3^2 is not in the sequence since q(18) > gpf(18), i.e., 5 > 3.
a(1) = 20 = 2^2*5 since q(20) < gpf(20), i.e., 3 < 5.
The number 60 = 2^2*3*5 is not a term since q(60) > gpf(60), i.e., 7 > 5, etc.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Block[{q = 2}, While[Divisible[x, q], q = NextPrime[q]]; q]; Select[Range[256], Nor[Length[#2] == 1, Max[#2[[All, -1]]] == 1, Divisible[#1, Apply[Times, #2[[All, 1]]]^2], f[#1] > #2[[-1, 1]]] & @@ {#, FactorInteger[#]} &]

Formula

Intersection of A332785 and A080259 = A332785 \ A055932 = A126706 \ A286708 \ A380543.
Showing 1-3 of 3 results.