A380560 Rectangular array R, read by descending antidiagonals: (row 1) = (R(1,k)) = (A006337(k)), k >= 1; (row n+1) = inverse runlength sequence of row n; and R(n,1) = 1 for n >=1, See Comments.
1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1
Offset: 1
Examples
Corner: 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2 1 2 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 1 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 1 2 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1
Programs
-
Mathematica
invR[seq_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &, Partition[Riffle[seq, {1, 2}, {2, -1, 2}], 2]]]; s = Differences[Table[Floor[n*Sqrt[2]], {n, 1, 21}]]; (* A006337 *) t = NestList[invR, s, 12]; u[n_] := Take[t[[n]], 20]; Table[u[n], {n, 1, 12}] (* array *) v[n_, k_] := t[[n]][[k]]; Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *) (* Peter J. C. Moses, Nov 13 2024 *)
Comments