This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380570 #40 Feb 05 2025 22:17:38 %S A380570 1,4,-1,16,-40,9,64,-560,1036,-225,256,-5376,31584,-51664,11025,1024, %T A380570 -42240,561792,-2764960,4228884,-893025,4096,-292864,7358208, %U A380570 -79036672,351475696,-515267064,108056025,16384,-1863680,78926848,-1559683840,14763100352,-61460460880,87512357916 %N A380570 Triangle T(n, k) read by rows: Row n gives the coefficients of the even powers in Product_{t=1..n}(2*x - (2*t - 1))*Product_{t=1..n}(2*x + (2*t - 1)). %C A380570 Odd coefficients of x are excluded here because they are zero. %H A380570 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HankelsSymbol.html">Hankel's Symbol</a>. %F A380570 The Hankel symbol (x, n) is defined as (-1)^n*cos(Pi*x)*Gamma(1/2+n-x)*Gamma(1/2+n+x)/(Pi*n!) = (cos(Pi*x)/((-4)^n*n!))*Sum_{k=0..n} T(n, k)*x^(2*k).. %F A380570 T(n, k) = A008956(n, k)*4^(n-k)*(-1)^k. %F A380570 Sum_{k=0..n} T(n, k) = A380612(n) = -(-4)^n*Gamma(-1/2 + n)*Gamma(3/2 + n)/Pi. %e A380570 Triangle begins: %e A380570 n \ k: 0 1 2 3 4 5 6 %e A380570 x^0 x^2 x^4 x^6 x^8 x^10 x^12 %e A380570 [0] 1; %e A380570 [1] 4, -1; %e A380570 [2] 16, -40, 9; %e A380570 [3] 64, -560, 1036, -225; %e A380570 [4] 256, -5376, 31584, -51664, 11025; %e A380570 [5] 1024, -42240, 561792, -2764960, 4228884, -893025; %e A380570 [6] 4096, -292864, 7358208, -79036672, 351475696, -515267064, 108056025; %e A380570 ... %o A380570 (PARI) T(n, k) = Vec(prod(k=1,n,2*x-(2*k-1))*prod(k=1,n,2*x+(2*k-1)))[1+2*k] %Y A380570 Cf. A000302 (column 0). %Y A380570 Cf. A001818 (absolute values of main diagonal). %Y A380570 Cf. A001824 (1/4 of absolute values of second diagonal). %Y A380570 Cf. A001825 (1/16 of absolute values of second diagonal). %Y A380570 Cf. A380612 (row sums). %Y A380570 Cf. A008956. %K A380570 sign,tabl %O A380570 0,2 %A A380570 _Thomas Scheuerle_, Jan 27 2025