This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380573 #42 Apr 09 2025 22:51:48 %S A380573 1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,23,24,25,26,28,29, %T A380573 31,32,33,34,35,36 %N A380573 Number of distinct free polyominoes that are terraces in the first n levels of the stepped pyramid described in A245092. %C A380573 Consider here that the stepped pyramid is an infinite polycube. %C A380573 a(n) is also the number of distinct free polyominoes that are parts of the symmetric representations of sigma of the first n positive integers. %C A380573 Conjecture: the polyomino "I" of width 1 and length k appears for the first time in the level 2*k - 1 starting from the top of the stepped pyramid, k >= 1. In other words: that polyomino appears for the first time in the symmetric representation of sigma(2*k-1). %e A380573 For n = 15 there are 16 distinct free polyominoes that are terraces of the stepped pyramid with 15 levels as shown below, so a(15) = 16. %e A380573 _ %e A380573 |_| _ %e A380573 _|_| %e A380573 |_|_| _ %e A380573 _ _ |_| %e A380573 |_|_| _|_| _ %e A380573 _ _|_|_| |_| %e A380573 |_|_|_| |_| _ %e A380573 _ _ _ _ _|_| |_| %e A380573 |_|_|_| |_|_|_| |_| %e A380573 _ _ _|_|_| |_| %e A380573 |_|_|_|_| _ _|_| _ %e A380573 _ _ _ _ _|_|_|_| |_| %e A380573 |_|_|_|_| |_|_| |_| %e A380573 _ _ _ _|_| |_| %e A380573 |_|_|_|_|_| |_| %e A380573 _ _ _ _ _ _ _ |_| %e A380573 |_|_|_|_|_| |_|_| _ _ _|_| %e A380573 _ _ _ _ _|_| _|_|_|_|_| %e A380573 |_|_|_|_|_|_| _|_|_|_| %e A380573 _ _ _ _ _ _ |_|_|_|_| %e A380573 |_|_|_|_|_|_| |_|_|_| %e A380573 _ _ _ _ _ _|_| _ %e A380573 |_|_|_|_|_|_|_| _ _ _ _|_| %e A380573 _ _ _ _ _ _ _ |_|_| |_|_|_| %e A380573 |_|_|_|_|_|_|_| |_| _|_|_| %e A380573 _ _ _ _ _ _ _|_| |_|_| %e A380573 |_|_|_|_|_|_|_|_| %e A380573 _ _ _ _ _ _ _ _ %e A380573 |_|_|_|_|_|_|_|_| %e A380573 . %e A380573 Compare with the diagram of A245092. %Y A380573 Cf. A000105, A000203, A175254, A196020, A235791, A236104, A237270, A237271, A237591, A237593, A239931-A239934, A245092, A262626, A347186. %K A380573 nonn,more %O A380573 1,2 %A A380573 _Omar E. Pol_, Mar 15 2025