This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380574 #22 Apr 22 2025 06:32:20 %S A380574 1,12,36,144,432,1296,1728,5184,15552,20736,46656,62208,186624,248832, %T A380574 559872,746496,1679616,2239488,2985984,6718464,8957952,20155392, %U A380574 26873856,35831808,60466176,80621568,107495424,241864704,322486272,429981696,725594112,967458816 %N A380574 For an integer k with prime factorization p_1*p_2*p_3* ... *p_m let k* = (p_1+1)*(p_2+1)*(p_3+1)* ... *(p_m+1); sequence gives k* such that k* is divisible by k. %C A380574 Terms of A064518 in increasing order. %C A380574 Numbers of the form 3^i*4^j with j <= i <= 2j. %C A380574 Subsequence of A064476. %H A380574 Amiram Eldar, <a href="/A380574/b380574.txt">Table of n, a(n) for n = 1..10000</a> %F A380574 Sum_{n>=1} 1/a(n) = 432/385. - _Amiram Eldar_, Mar 29 2025 %t A380574 With[{max = 10^9}, Select[Flatten[Table[3^i*4^j, {j, 0, Log[12, max]}, {i, j, 2*j}]] // Sort, # <= max &]] (* _Amiram Eldar_, Mar 29 2025 *) %o A380574 (Python) %o A380574 from sympy import integer_log %o A380574 def A380574(n): %o A380574 def bisection(f,kmin=0,kmax=1): %o A380574 while f(kmax) > kmax: kmax <<= 1 %o A380574 kmin = kmax >> 1 %o A380574 while kmax-kmin > 1: %o A380574 kmid = kmax+kmin>>1 %o A380574 if f(kmid) <= kmid: %o A380574 kmax = kmid %o A380574 else: %o A380574 kmin = kmid %o A380574 return kmax %o A380574 def f(x): return n+x-sum(max(0,min((j:=i<<1),integer_log(x>>j,3)[0])-i+1) for i in range(x.bit_length()+1>>1)) %o A380574 return bisection(f,n,n) %Y A380574 Cf. A064518, A064514, A064515, A064476. %K A380574 nonn,easy %O A380574 1,2 %A A380574 _Chai Wah Wu_, Mar 26 2025