cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380580 Irregular tetrahedron T(s,r,k) read by rows in which the slice s is an irregular triangle, itself read by rows, in which row r lists the r-th row of A237593 sandwiched between two A380579(s+1,r+1), with s >= 0; 0 <= r <= s; k >= 0. Assume that row 0 of A237593 is empty.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 1, 1, 4, 4, 3, 1, 1, 3, 2, 2, 2, 2, 5, 5, 4, 1, 1, 4, 3, 2, 2, 3, 2, 2, 1, 1, 2, 2, 7, 7, 6, 1, 1, 6, 5, 2, 2, 5, 4, 2, 1, 1, 2, 4, 3, 3, 1, 1, 3, 3, 8, 8, 7, 1, 1, 7, 6, 2, 2, 6, 5, 2, 1, 1, 2, 5, 4, 3, 1, 1, 3, 4, 3, 3, 2, 2, 3, 3, 10, 10, 9, 1, 1, 9, 8, 2, 2, 8, 7, 2, 1, 1, 2, 7, 6, 3, 1, 1, 3, 6, 5, 3, 2, 2, 3, 5
Offset: 0

Views

Author

Omar E. Pol, Jan 27 2025

Keywords

Comments

The discussion of this sequence was too long to be included here, and can be found in the attached "Discussion" text file (see the first link). - N. J. A. Sloane, Jul 31 2025

Crossrefs

See the "Discussion" text file for the cross-references.

Programs

  • Mathematica
    A237593row[n_] := Join[#, Reverse[#]] & [Table[Ceiling[(n+1)/k - (k+1)/2] + Quotient[k*(k+3) - 2*n, 2*(k+1)], {k, Quotient[Sqrt[8*n + 1] - 1, 2]}]];
    A380580slice[s_] := Table[Join[#, A237593row[r], #] & [{Quotient[3*s, 2] - r + 1}], {r, 0, s}];
    Array[A380580slice, 10, 0] (* Paolo Xausa, Aug 19 2025 *)

Extensions

Edited by N. J. A. Sloane, Jul 31 2025