This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380591 #32 Feb 08 2025 20:52:04 %S A380591 0,1,5,21,90,395,1773,8110,37686,177450,844935,4061762,19687020, %T A380591 96107358,472132330,2332304055,11578595554,57736664825,289055592810, %U A380591 1452381167325,7321620080550,37020073600755,187699184460450,954084756674088,4861008765722340 %N A380591 a(n) is the number of dissections of a convex (n+2)-sided polygon by nonintersecting diagonals into triangles and quadrilaterals such that at least one of the dividing diagonals passes through a chosen vertex. %H A380591 Muhammed Sefa Saydam, <a href="/A380591/b380591.txt">Table of n, a(n) for n = 1..100</a> %F A380591 a(n) = A001002(n) + A217596(n). %F A380591 a(n) = -Sum_{i=0..n-2} A217596(i+1) * A001002(n-1-i), n >= 2. %e A380591 a(2) = 1. Because: Let's choose vertex A in convex quadrilateral ABCD. At least one diagonal must pass through corner A. A diagonal is drawn at corner C. 2 triangles are obtained. There is 1 situation. %e A380591 a(3) = 5. Because: Let's choose vertex A in convex pentagon ABCDE. At least one diagonal must pass through corner A. First case: diagonals AD and AC can be drawn. Second Case: Diagonals AD and DB can be drawn. Third case: Only diagonal AD can be drawn. Fourth Case: Diagonals AC and EC can be drawn. Fifth Case: Only diagonal AC can be drawn. There are 5 situations in total. %p A380591 a:= proc(n) option remember; `if`(n<3, n*(n-1)/2, (n*(3059*n^2 %p A380591 -7876*n+4997)*a(n-1)+(4120*n^3-22681*n^2+39305*n-21644)*a(n-2) %p A380591 +39*(n-3)*(3*n-10)*(3*n-11)*a(n-3))/(5*(n+1)*n*(142*n-337))) %p A380591 end: %p A380591 seq(a(n), n=1..25); # _Alois P. Heinz_, Jan 27 2025 %o A380591 (PARI) a(n) = if(n==0,1,if(n==1,-1,-sum(i=ceil(n/2),n,binomial(i,n-i)*binomial(n+i-2,n-2)/(n-1)))) + (1/(n+1))*sum(k=ceil(n/2),n,binomial(n+k,k)*binomial(k,n-k)); \\ _Michel Marcus_, Jan 27 2025 %Y A380591 Cf. A001002, A217596. %K A380591 nonn,easy %O A380591 1,3 %A A380591 _Muhammed Sefa Saydam_, Jan 27 2025